Technical Report Chapter 2: Assessment

Australian Clinical Guidelines for Health Professionals Managing People with Whiplash-Associated Disorders, Fourth Edition

1. Authors

Dr Ana Paula Carvalho-e-Silvaª, Dr Christopher Papic^{a,b}, Dr Lionel Chia^{c,d}, Prof Ian Cameron^{d,e}, and Prof Trudy Rebbeck^a

^aJohn Walsh Centre for Rehabilitation Research, University of Sydney, Sydney, Australia.

^bExercise and Sports Science, University of New England, Armidale, Australia.

°Cleveland Guardians Baseball Co., Ohio, USA

^dFaculty of Medicine and Health, University of Sydney, Sydney, Australia.

^eNorthern Sydney Local Health District, Sydney, Australia.

2. Abstract

Background: Whiplash-associated-disorders (WAD) are the most common outcome for Australians involved in non-catastrophic motor vehicle collisions (MVC), where half have persisting problems. Despite three iterations of Australian acute whiplash guidelines, implementation of evidence-based care can be inconsistent and little guidance has been provided on managing people with chronic WAD.

Objective: The objective of these evidence reviews, and recommendation development procedures was to identify clinical presentation features of people with acute and chronic WAD from observational studies and recommend factors that could be assessed by healthcare professionals to determine impairment and inform treatment direction.

Methods: A multidisciplinary panel (n=18) was convened comprising key stakeholders. Observational clinical studies comparing people with acute or chronic WAD to a control group or subgroup of WAD were identified by systematic review and the previous Australian whiplash guidelines. Studies were classified into 7 main categories: physical/musculoskeletal impairment, sensorimotor, pain sensitivity, additional psychological factors, additional symptoms, advanced medical testing, and imaging. Studies were then subcategorised further into assessment types (e.g., range of motion for physical/musculoskeletal impairment). The panel voted on twenty-one clinical questions based on the consistency of findings across the extant literature and current practice to provide consensus recommendations on whether healthcare professionals should assess each factor. The Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) Evidence to Decision Framework was modified for the purpose of developing guideline panel consensus recommendations for assessment of people with WAD. It is to be noted that certainty of evidence ratings and risk of bias were not evaluated in this section of the guidelines and the recommendations are therefore deemed as "guideline panel consensus recommendations". Implementation considerations assessing these factors were developed in accordance with the included studies (e.g., the assessment tool used, relevant clinical thresholds), feasibility (i.e., whether it can be implemented in a clinical setting) and input from the guideline panel (e.g., subject matter experts, healthcare professionals, consumers).

Results: 29 observational studies for acute and 135 observational studies for chronic WAD were included. Guideline panel consensus recommendations FOR measuring the factors included range of motion, cervical muscle function, cervical joint position error, balance, and thermal hyperalgesia. NEUTRAL consensus recommendations with more stringent implementation considerations were specific to clinical presentation features such as muscle performance, coordination, and proprioception. Consensus recommendations were made AGAINST imaging or advanced testing (e.g., nociceptive flexion, inflammatory biomarkers, fat infiltration).

Conclusions: We have provided healthcare professionals with recommendations for assessing people with whiplash, in addition to the Diagnosis and Prognostic assessments detailed in the guidelines. Assessing neck range of motion assists healthcare professionals in determining the WAD grade. The need to assess physical impairment, pain sensitivity, sensorimotor, additional

psychological factors, and other factors will vary based on the person's clinical presentation. Although some imaging techniques (i.e., measuring muscle fat infiltration) showed evidence of differences in people with WAD and can assist in the understanding of the WAD mechanism, consensus recommendations were made against assessing these factors mainly as they are not feasible to implement in clinical settings. Assessment should be based on risk stratification, clinical presentation features of the person with WAD, and whether assessing the factors assist in treatment direction.

3. Suggested citation

Carvalho-e-Silva, A. P., Papic, C., Chia, L., Cameron, I. D., & Rebbeck, T. (2023). Australian Clinical Guidelines for Health Professionals Managing People with Whiplash-Associated Disorders, Fourth Edition: Technical Report Chapter 2 Assessment. State Insurance Regulatory Authority: Sydney, Australia.

4. Introduction

Whiplash-associated-disorders are the most common injury for the ~2.6 million Australians involved in a non-catastrophic MVC and are characterised by symptoms following whiplash trauma to the neck (MAA, 2009). Whilst half of those Australians injured should see rapid recovery following a MVC, the clinical course is not so clear for the remaining 50% who may develop chronic pain, disability, psychological disorders (e.g., posttraumatic stress, depression, and anxiety) and continue to report long-term interference in daily life (Campbell et al., 2018; Sterling et al., 2010).

The 2014 NSW SIRA "Guidelines for the Management of Acute Whiplash Associated Disorders for Health Professionals" (SIRA, 2014) covers management of people with WAD in the first 12 weeks following an MVC. The 2008 Trauma and Injury Recovery "Clinical Guidelines for Best Practice Management of Acute and Chronic Whiplash-Associated Disorders" (TRACsa, 2008) provides some guidance on management of people with chronic WAD. However, a considerable number of studies have been published since these two guidelines, and at present, the acute guidelines are mostly used across Australia. As per the Australian National Health and Medical Research Council (NHMRC) Standards for Guidelines, recommendations within clinical guidelines need to be based on current evidence to ensure ongoing relevance and reliability. There is a need for systematic review and collation of current evidence to update the existing Australian WAD guidelines and bridge the gap between research and clinical practice. Since the previous guidelines the GRADE process for evaluating certainty of evidence and developing recommendations is being increasingly used and is now a requirement of new Australian guidelines. The overall aim of developing these guidelines is to improve health and social outcomes of people with acute and chronic WAD by providing best practice consensus recommendations for health professionals managing these people. This technical report details the evidence review, guideline consensus recommendation procedures, and recommended outcomes for assessing people with acute and chronic WAD.

5. Abbreviations

BPPT = Brachial Plexus Provocation Test BPNN = Back Propagation Neural Network COMT = Genetic marker CPM = Conditioned Pain modulation CPT = Cold pain thresholds CT = Computed tomography DASS = Depression Anxiety Stress Scale EDT = Electrical Detection Thresholds EMG = Electromyography EPT = Electrical Pain Thresholds GP = General Practitioners GRADE = Grading of Recommendations, Assessment, Development, and Evaluations HCP = Healthcare Professional HPT = Heat Pain Thresholds MFI = Muscle Fat Infiltration MRI = Magnetic Resonance Imaging MRS = Magnetic Resonance Spectroscopy MSK = Musculoskeletal MVC = Motor vehicle collision MVIF = Maximal voluntary isometric force NFR = Nociceptive Flexion Reflex NHMRC = National Health and Medical Research Council NTNP = Non-Traumatic Neck Pain PDQ = Perceived Deficits Questionnaire PET = Positron Emission Tomography PPT = Pressure Pain Threshold PSD = Positive Symptom Distress QST = Quantitative Sensory Testing ROM = Cervical Range of Motion SD = Standard Deviation SES = Self-Efficacy Scale SPECT = Single Photon Emission Computed Tomography SPNT = Pursuit Neck Torsion Test US = Ultrasound WAD = Whiplash-associated disorders

Contents

1.	Authors			
2.	Abstract			
3.	Sugge	ested citation	3	
4.	Introd	uction	3	
5.	Abbre	viations	3	
6.	Technical Report Chapter 2: Assessment of acute and chronic whiplash-associated disorders			
6.1.	Review	v of evidence	7	
	6.1.1.	Objectives	7	
	6.1.2.	Systematic review	7	
	6.1.3.	Search strategy	7	
	6.1.4.	Inclusion criteria	8	
	6.1.5.	Selection of clinical question	10	
	6.1.6.	Data extraction and evidence synthesis	12	
6.2.	Conse	nsus recommendation development	12	
6.3.	Metho	d limitations	17	
7.	Asses	sment consensus recommendations	18	
A.1 P	hysical	Musculoskeletal Impairment	18	
	A.1.1.	Executive summary	18	
	A.1.2.	Acute physical musculoskeletal impairment	19	
	A.1.3.	Acute physical musculoskeletal impairment evidence summary	20	
	A.1.4.	Chronic physical musculoskeletal impairment	21	
	A.1.5.	Chronic physical musculoskeletal impairment evidence summary		
	A.1.6.	Conclusions (physical musculoskeletal impairment in acute WAD)		
	A.1.7.	Conclusions (physical musculoskeletal impairment in chronic WAD)	43	
A.2.	Senso	rimotor	48	
	A.2.1.	Executive summary		
	A.2.2.	Acute sensorimotor	48	
	A.2.4.	Acute sensorimotor evidence summary	53	
	A.2.5.	Chronic sensorimotor	53	
	A.2.6.	Chronic sensorimotor evidence summary	72	
	A.2.7.	Conclusions (sensorimotor in acute WAD)	79	
	A.2.8.	Conclusions (sensorimotor in chronic WAD)	84	
A.3.	Pain S	ensitivity		
	A.3.1.	Executive summary		
	A.3.2.	Acute pain sensitivity	89	
	A.3.3.	Acute pain sensitivity evidence summary	93	
	A.3.4.	Chronic pain sensitivity	95	
	A.3.5.	Chronic pain sensitivity evidence summary	105	

	A.3.6.	Conclusions (pain sensitivity in acute WAD)	113
	A.3.7.	Conclusions (pain sensitivity in chronic WAD)	120
A.4.	Additi	onal psychological factors	
	A.4.1.	Executive summary	125
	A.4.2.	Acute additional psychological factors	125
	A.4.3.	Acute additional psychological factors evidence summary	126
	A.4.4.	Chronic additional psychological factors	127
	A.4.5.	Chronic additional psychological factors evidence summary	129
	A.4.6.	Conclusions (additional psychological factors in acute WAD)	132
	A.4.7.	Conclusions (additional psychological factors in chronic WAD)	137
A.5.	Additi	onal Symptoms	140
	A.5.1.	Executive summary	140
	A.5.2.	Acute additional symptoms	140
	A.5.3.	Acute additional symptoms evidence summary	142
	A.5.4.	Chronic additional symptoms	142
	A.5.5.	Chronic additional symptoms evidence summary	144
	A.5.6.	Conclusion (additional symptoms in acute and chronic WAD)	147
A.6.	Advan	ced medical testing	150
	A.6.1.	Executive summary	150
	A.6.2.	Acute advanced medical testing	150
	A.6.3.	Acute advanced medical testing evidence summary	153
	A.6.4.	Chronic advanced medical testing	154
	A.6.5.	Chronic advanced medical testing evidence summary	158
	A.6.6.	Conclusion (advanced medical testing in acute WAD)	161
	A.6.7.	Conclusion (advanced medical testing in chronic WAD)	165
A.7.	Imagir	ו	167
	A.7.1.	Executive summary	167
	A.7.2.	Acute imaging	168
	A.7.3.	Acute imaging evidence summary	173
	A.7.4.	Chronic imaging	174
	A.7.5.	Chronic imaging evidence summary	
	A.7.6.	Conclusion (imaging in acute WAD)	203
	A.7.7.	Conclusion (imaging in chronic WAD)	
8.	Refere	ences	209
9.	List of	tables	220
10.	List of	figures	222

6. Technical Report Chapter 2: Assessment of acute and chronic whiplash-associated disorders

6.1. Review of evidence

6.1.1. Objectives

Objectives of this systematic review and recommendation development procedures were to identify evidence of the clinical features of WAD and evaluate the feasibility of their assessment methods to inform what factors healthcare professionals (HCP) should assess in people with whiplash-associated disorders (WAD). The process included evaluating what assessment methods assist in: i) classifying the grade of whiplash associated disorders (WAD); ii) determining dysfunction in people with acute or chronic whiplash-associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); iii) determining the direction of treatment(s); or iv) evaluating the effectiveness of treatment intervention(s). These data were used to develop clinical consensus recommendations and implementation considerations for healthcare professionals managing people with acute and chronic WAD in Australia.

6.1.2. Systematic review

Systematic review methods used in the 2014 NSW SIRA "Guidelines for the Management of Acute Whiplash Associated Disorders for Health Professionals" (SIRA, 2014) and 2008 Trauma and Injury Recovery "Clinical Guidelines for Best Practice Management of Acute and Chronic Whiplash-Associated Disorders" (TRACsa, 2008) were adapted for this review to ensure a consistent methodological approach and synthesis of current evidence with that of the existing guidelines.

6.1.3. Search strategy

Database searches were performed specific to the population group (whiplash injury) and study design criteria (observational studies). A single search strategy was used to capture original research articles pertaining to assessment for acute or chronic WAD. The search strategy was developed in the Ovid Medline database (Table 1) and adapted for database specific medical subject headings.

Characteristics	Search strategy
Whiplash injury	 whiplash* whiplash injuries/ neck pain* adj4 whiplash neck injur* adj4 whiplash traumatic neck injur* traumatic neck pain*
Assessment	 7. diagnosis/ 8. diagnosis*. mp. 9. assessment*.mp. 10. evaluation study/ 11. evaluat*.mp. 12. analy*.mp.
Whiplash injury And Assessment	1 OR 2 OR 3 OR 4 OR 5 OR 6 AND 7 OR 8 OR 9 OR 10 OR 11 OR 12
Subclassification	Sub?classif* Sub?group*
Filters	Publication date: 2007-current

Table 1: Management of whiplash-associated-disorders database search strategy

/ = medical subject heading; * = truncation of keyword; adj4 = adjunct within 4 words keyword; mp. = multi-purpose

Searches were performed using eight electronic databases covering the period of 2007 (end of the TRACsa guidelines search) to 1 June 2022: Allied and Complementary Medicine Database (Amed), CINAHL, Cochrane (Systematic Reviews Database), Embase, Medline, PsycINFO, and Web of Science Core Collection. Articles were screened for eligibility using the online software Covidence (Covidence.org: Melbourne, Australia). Clinical observational studies included in the previous Australian guidelines were identified. Reference lists of review articles that were specific to whiplash injury were screened.

6.1.4. Inclusion criteria

Articles from the database searches and those included in the existing guidelines were screened against the population, study design, and whiplash injury grade inclusion criterion (Table 2). Conflicts in the title and abstract screening were resolved via consensus by the two reviewers. Full-text screening of articles was performed by APCS. Members of the research team were consulted on studies whose eligibility was unable to be determined by the reviewers, and a decision was made by consensus.

Table 2: Inclusion criterion for whiplash-associated-disorders assessment studies

Characteristics	Inclusion criterion
Population	 Human study Participants were of driving age ≥16 years. Motor vehicle accident resulting in WAD grade I-III (Spitzer, 1995). Study includes an identifiable and separately analysed subgroup of people suffering from whiplash, that comprise ≥50% of the total sample size.
Study design	 Observational studies Participants with acute or chronic WAD were compared to other populations (e.g., cohort with idiopathic neck pain) Study includes an identifiable and separately analysed subgroup of participants suffering from whiplash. Available in English.
Outcomes	 Clinical assessment techniques, functional tests, imaging, or radiological tests that were used to: (Assessment) assessment methods assist in classifying the grade of acute and subacute. (Dysfunction) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations. (Informing treatment) informing treatment direction of responsiveness, e.g., pain sensitivity, muscle function.
Acute	 Manuscript published between January 2007 - June 2022. Participants were recruited with acute/subacute WAD (<3months post whiplash injury).
Chronic	 Manuscript published between January 2007 – June 2022. Participants were recruited with chronic WAD (≥3months post whiplash injury).

A PRISMA flow chart (Page et al., 2021) of the study selection pertaining to the clinical assessment with acute and chronic WAD is shown in Figure 1. There were 290 full text articles screened from those identified in the databases and a further 50 articles from the existing Australian guidelines. There were 29 and 135 studies included that related to clinical studies assessing people with acute and chronic WAD, respectively. Further information on the process of identifying clinical questions relevant to identify clinical features of WAD an Australian context is outlined in 2.1.5 Selection of clinical question.

Figure 1 Assessment of whiplash-associated disorders search results.

6.1.5. Selection of clinical question

Clinical presentation features (e.g., impaired neck range of motion) and their assessment methods were identified from the previous Australian whiplash guidelines and from the systematic review. The research team categorised studies according to the primary factor investigated (i.e., if the authors defined the factor as the primary aim). Seven assessment categories were developed: physical/musculoskeletal impairment, sensorimotor, pain sensitivity, additional psychological factors, other symptoms, advanced medical testing, and imaging. Evidence summaries and recommendations were based on the following clinical research question: What assessments assist in a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s)? This question was applied to each assessment category (Table 3).

Table 3: Clinical questions related to the assessment section of whiplash-associated disorders

Assessment categories	Clinical question
Physical Musculoskeletal Impairment	What physical and/or musculoskeletal clinical assessments assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).
Sensorimotor	What sensorimotor clinical assessments assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).
Pain sensitivity	What pain sensitivity clinical assessments assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).
Additional Psychological Factors	What psychological clinical assessments assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).
Additional Symptoms	What clinical assessments of additional symptoms assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).

Advanced medical testing	What advanced medical testing methods assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).
Imaging	What imaging methods assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).

Studies in each category were then sub-categorised according to the factors assessed, test performance, or the technique used. For example, studies under the physical/musculoskeletal impairment category were grouped into trigger points, cervical range of motion, muscle performance/postural changes, or muscle function (Table 4). These sub-categories were developed to facilitate panel consensus recommendations (see 6.2 Consensus recommendation development).

Table 4: Assessment of whiplash-associated disorders subcategories

Assessment domain	Subcategories
Physical Musculoskeletal Impairment	Trigger points, Cervical Range of Motion (ROM) Muscle performance/postural changes Muscle function
Sensorimotor	Cervical joint position error Cervical movement sense Oculomotor disturbance Balance Coordination Test Others – Proprioception
Pain sensitivity	Pressure hyperalgesia Thermal hyperalgesia Dynamic pain sensitivity testing Quantitative Sensory Testing (QST) (vibration) Brachial Plexus Provocation Test (BPPT) Nociceptive Flexion Reflex (NFR) Others
Additional Psychological Factors	Fear avoidance Self-efficacy Mental disorder Psychological distress Cognitive deficits
Additional Symptoms	Additional symptoms Sleep disturbance Jaw symptoms Disability
Advanced medical testing	Stress hormone Inflammatory biomarkers Cerebral blood flow Others
Imaging	Morphology Structure changes Morphology Muscle Fat Infiltration

Morphology Muscle Size
Metabolites measure by Magnetic resonance
spectroscopy
Brain characteristics
Nerve Mobility
Others

6.1.6. Data extraction and evidence synthesis

Data extraction was performed by two members of the research team (APCS and LC). The following information was extracted for each study: first-author, year of publication, study title, study aim, study design (longitudinal, cross-sectional), setting, country, classification of acute or chronic WAD population, number of participants and % of female participants, age (mean, SD) for WAD group and comparison group (e.g. healthy control, idiopathic neck pain), study type (diagnostic or clinical assessment studies), factors type(s) assessed and the outcome measured for each factor, main primary factors and outcome assessed, primary factor assessment/diagnostic technique, main outcome, significant differences between groups (yes or no) and comments (author's conclusion) into a custom spreadsheet in Microsoft Excel. If the study assessed multiple factors; the main factor was determined according to the primary aim and results. If this was not possible, a consensus on the main outcome was achieved among the research team. The main outcome and statistical differences between groups (i.e., WAD group versus healthy control) were extracted for the primary factor.

Each included study belonged to one category and its subcategory only; the exception was for pain sensitivity, where studies were classified into more than one subcategory. This decision was based on a pragmatic approach by the research team as pain sensitivity was evaluated using several assessment methods that are applied in clinical practice (e.g., thermal hyperalgesia, brachial plexus provocation test, conditioned pain modulation). Evidence summaries for each category detailed the number of studies and whether there were statistically significant differences between WAD and control groups.

6.2. Consensus recommendation development

For each category, an evidence summary and draft of the modified GRADE Evidence to Decision Framework (Alonso-Coello et al., 2016) was provided to the guideline panel for review prior to meeting, consistent with the format detailed in this technical report. The research team summarised the evidence in lay language (suitable for non-research guideline panel members) during a whole day working group workshop; held via face-to-face meeting and simultaneously in Microsoft Teams for those who could not attend physically.

The GRADE Evidence to Decision Framework was modified to discuss and develop a panel consensus recommendation for factors, assessment methods, and test/techniques healthcare professionals should use when assessing people with WAD. The clinical feasibility of assessing or performing the test, strength of association (number and proportion of participants/studies finding significant differences between groups), and undesirable effects (e.g., possible exacerbation of symptoms by provocative tests) were considered critical outcomes by the panel when developing consensus recommendations. Different studies that used the same population cohort had their results (significant or not significant) counted once to not overestimate the strength of association evidence. Resources, equity, and acceptability framework elements received input from healthcare professionals, consumers, and insurers on the guideline panel. Consensus recommendations were developed separately for acute and chronic WAD.

Following review and panel agreement on content presented in the framework (the panel was asked to comment on each item), the panel used an anonymous online voting system (Menti.com) to reach a consensus on a recommendation classification. The voting question "Are you for or against healthcare professionals assessing the following factors in people with acute/chronic WAD" was

adapted for each category and sub-category. One voting question could contain one or more subcategories. Grouping more than one subcategory in those questions was performed pragmatically based on the strength of the evidence and likely recommendation classification. The clinical voting questions proposed to the panel are outlined in Table 5.

Table 5: Clinical question for panel to vote on consensus recommendation

Assessment domain	Clinical question for voting			
Physical musculoskeletal impairment				
Acute	Are you for or against healthcare professionals assessing the following physical musculoskeletal impairment factors in people with acute WAD: Cervical ROM			
Acute	Are you for or against healthcare professionals assessing the following physical musculoskeletal impairment factors in people with acute WAD: Cervical muscle function and cervical muscle performance.			
Chronic	Are you for or against healthcare professionals assessing the following physical musculoskeletal impairment factors in people with chronic WAD: Cervical ROM			
Chronic	Are you for or against healthcare professionals assessing the following physical musculoskeletal impairment factors in people with chronic WAD: Cervical muscle function?			
Chronic	Are you for or against healthcare professionals assessing the following physical musculoskeletal impairment factors in people with chronic WAD: Cervical muscle performance?			
Sensorimotor				
Acute	Are you for or against healthcare professionals assessing the following sensorimotor factors in people with acute WAD: cervical joint position error, cervical movement sense, oculomotor disturbance, balance, and coordination test?			
Chronic	Are you for or against healthcare professionals assessing the following sensorimotor factors in people with chronic WAD: cervical joint position error, cervical movement sense, oculomotor disturbance, balance?			
Chronic	Are you for or against healthcare professionals assessing the following sensorimotor factors in people with chronic WAD coordination and proprioception (others)?			
Pain sensitivity				
Acute	Are you for or against healthcare professionals assessing the following pain sensitivity tests in people with acute whiplash: thermal hyperalgesia, pressure hyperalgesia, dynamic pain sensitivity, brachial plexus provocation test?			
Acute	Are you for or against healthcare professionals assessing the following pain sensitivity tests in people with acute whiplash: vibration hyperalgesia, nociceptive flexion reflex?			
Chronic	Are you for or against healthcare professionals assessing the following pain sensitivity tests in people with chronic whiplash: thermal hyperalgesia, pressure hyperalgesia, brachial plexus provocation test?			
Chronic	Are you for or against healthcare professionals assessing the following pain sensitivity tests in people with chronic whiplash: dynamic pain sensitivity test?			

Chronic	Are you for or against healthcare professionals assessing the following pain sensitivity tests in people with chronic whiplash: Nociceptive Flexion Reflex (NFR) and vibration hyperalgesia?			
Additional psychological factors				
Acute	Are you for or against healthcare professionals assessing the following additional psychological factors in people with acute WAD: fear avoidance and self-efficacy?			
Chronic	Are you for or against healthcare professionals assessing the following psychological factors in people with chronic WAD: depression?			
Chronic	Are you for or against healthcare professionals assessing the following psychological factors in people with chronic WAD: psychological distress symptoms and perceived cognitive deficits?			
Additional symptoms				
Acute Chronic	Are you for or against healthcare professionals assessing the following additional symptoms in people with acute and chronic WAD: jaw symptoms, upper limb disabilities, sleep quality?			
Advanced medical testing				
Advanced medical tes	ting			
Advanced medical tes Acute	ting Are you for or against healthcare professionals assessing the following advanced medical testing in people with acute WAD: stress hormone and inflammatory biomarkers?			
Advanced medical tes Acute Chronic	ting Are you for or against healthcare professionals assessing the following advanced medical testing in people with acute WAD: stress hormone and inflammatory biomarkers? Are you for or against healthcare professionals assessing the following advanced medical testing in people with chronic WAD: stress hormone and inflammatory biomarkers, blood flow, skin biopsy and genetic markers?			
Advanced medical tes Acute Chronic Imaging	ting Are you for or against healthcare professionals assessing the following advanced medical testing in people with acute WAD: stress hormone and inflammatory biomarkers? Are you for or against healthcare professionals assessing the following advanced medical testing in people with chronic WAD: stress hormone and inflammatory biomarkers, blood flow, skin biopsy and genetic markers?			
Advanced medical tes Acute Chronic Imaging Acute	ting Are you for or against healthcare professionals assessing the following advanced medical testing in people with acute WAD: stress hormone and inflammatory biomarkers? Are you for or against healthcare professionals assessing the following advanced medical testing in people with chronic WAD: stress hormone and inflammatory biomarkers, blood flow, skin biopsy and genetic markers? Are you for or against healthcare professionals assessing the following imaging technique in people with acute WAD: magnetic resonance imaging (MRI) and Ultrasound (US) to assess changes in Morphology – structure changes, muscle fat infiltration and muscle size- and muscle stiffness?			

Consensus recommendation classifications and their interpretations are outlined in Table 6. More than 50% of votes were required to reach consensus, with a quorum of eight panel members. However, 50% was not considered sufficient to be a consensus if there is strong opposition to the result. If there is no clear consensus after the first vote, the working group would critically discuss the outcome and rationale before proceeding to a second vote. Where a consensus cannot be reached, the Chair could choose to have the casting vote.

Clinical implementation considerations were developed for all recommendations that were neutral, conditional for, or strong for. These considerations were informed by the extant literature presented in the evidence summary (e.g., clinical test to measure the factor) and from input by the guideline panel (e.g., subject matter experts' healthcare professionals, consumers).

Recommendation classification	Interpretation			
Strong	Healthcare professionals should assess the factor in all or almost all people, in all or almost all circumstances, in accordance with the implementation considerations.			
for	"There was strong guideline panel consensus that healthcare professionals assess the following (factor, perform test, technique, or imaging) in people with (acute/chronic) WAD"			
Conditional	Healthcare professionals should assess the factor in most people, but not all, in accordance with the implementation considerations.			
consensus for	"There was guideline panel consensus to suggest that healthcare professionals assess the following (factor, perform test, technique, or imaging) in people with (acute/chronic) WAD"			
Neutral	Neither for nor against assessing the factor. In some instances, healthcare professionals could assess the factor in accordance with the implementation considerations, such as people who present impairment for the factor or assessing the factor may assist in guiding treatment direction.			
	"The guideline panel cannot reach consensus for or against assessing the following (factor, perform test, technique, or imaging) in people with (acute/chronic) WAD"			
Conditional	Healthcare professionals should <u>not</u> assess the factor in most people.			
consensus against	"There was guideline panel consensus to suggest that healthcare professionals do not assess the following (factor, perform test, technique, or imaging) in people with (acute/chronic) WAD"			
Strong	Healthcare professionals should <u>not</u> assess the factor in all or almost all people, in all or almost all circumstances.			
consensus against	"There was strong guideline panel consensus that primary healthcare professionals do not assess the following (factor, perform test, technique, or imaging) in people with acute/chronic WAD"			

Table 6: Assessment recommendation classifications and their interpretation

Consensus recommendations were developed separately for managing acute and chronic WAD, except for the additional symptom category. In some circumstances, consistent significant findings were present for a factor, and the finding was of interest to investigate the mechanisms of the

clinical feature of WAD; however, the technique or test was not feasible in a clinical setting. It was unlikely that assessment of these factors could have a 'consensus recommendation for'.

6.3. Method limitations

The evidence synthesis and recommendation development procedures are potentially limited by the following factors:

- Studies included in the assessment section are low quality observational studies comparing a WAD group to a control group and risk of bias evaluation was not performed.
- Extent of heterogeneity in what studies assessed technique or test used. A more narrative approach to summarising the finding was used as statistical analysis and performing the magnitude of evidence for pooled analyses were not feasible for these guidelines.
- The certainty of evidence was not evaluated as part of this section of the guidelines. The evidence synthesis was based on consistency of findings and the number of studies and participants.
- The GRADE Evidence to Decision Framework (Alonso-Coello et al., 2016) was adapted to develop recommendations. The recommendation is not based on a method as robust as the other portions of these guidelines, and therefore we noted that recommendations were a "panel consensus recommendation".

7. Assessment consensus recommendations

A.1 Physical Musculoskeletal Impairment

What physical and/or musculoskeletal clinical assessments assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).

A.1.1. Executive summary

What Physical/Musculoskeletal Impairment Factors should healthcare professionals assess in people with acute and chronic whiplash?

Acute whiplash: Two cross-sectional studies evaluated physical musculoskeletal (MSK) impairment in people with whiplash compared with controls or other pain conditions. Two studies evaluated physical MSK impairments in sub-groups of people with WAD. Summary of findings there:

- Muscle function: 1/1 study found isometric muscle fatigue in paravertebral and upper
 - extremity muscles in people with WAD.
- Muscle Performance: 1/1 study suggests overactivity in superficial neck flexor muscles in people with acute WAD.

Chronic whiplash: 22 studies evaluated physical MSK impairment in people with whiplash compared with controls or other pain conditions. Eighteen independent studies evaluated physical MSK impairments in sub-groups of people with WAD. Summary of findings here:

- Trigger point: 1/1 study found a higher prevalence of trigger points in neck muscles in people with WAD.
- Cervical range of motion (ROM): 6/6 studies found a significant reduction in ROM in people with WAD.
- Muscle performance/Postural changes: 5/6 studies found muscle performance impairment in people with WAD (e.g., the increased elevation of the clavicle.
- Muscle function: 6/6 significant studies reduction in muscle function in people with WAD (e.g., lower cervical strength, poor cervical flexor endurance) than control.

A.1.2. Acute physical musculoskeletal impairment

Muscle Function

Category: Physical Musculoskeletal Impairment

Sub-category: Muscle Function- Acute and Subacute WAD studies (n=1)

Table 7: Summary of included studies (acute muscle function)

Author Year Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Rastovic et To determine	75 people with	75 healthy	Muscle	In all six positions,	Muscle endurance and	Significant
al., 2017) muscle fatig	ue acute (within	controls	Function	people with whiplash	the appearance of	
in people wit	h 6hr) WAD			had faster fatigue	isometric muscle	Fatigue
Isometric whiplash inju muscle in six body fatigue of the paravertebral and upper extremity muscles after whiplash	ry		Endurance Neck and upper extremities isometric muscle endurance tests	than controls ls (P<.05). Assignment to the person or control group and injury grade could be predicted with more than 90% accuracy based on time to muscle fatigue.	fatigue during testing can be useful indicators of whiplash injury and grade.	WAD>C

Muscle Performance

Category: Physical Musculoskeletal Impairment Sub-category: Muscle Performance - Acute WAD studies (n=1)

 Table 8: Summary of included studies (acute muscle performance)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Sterling, Jull,	To determine if	66 people with	20	Muscle	Overactivity on EMG	Suggestive of	Significant
Vicenzino,	motor system	acute WAD	asymptomatic	Performance	measurements of	overactivity in	
Kenardy, et	dysfunction	(<3mo) (68%	controls		superficial neck	superficial neck flexors	Muscle
al., 2003)	exists in	female)	(60% female)	EMG activity	flexors remained	in people with acute	activity
	people with			during a	elevated in all	WAD.	WAD>C
Development	acute WAD			craniocervica	whiplash groups		
of motor	compared to			l flexion test	compared to		
system	asymptomatic				controls (p<0.01).		
dysfunction	controls				This was greatest in		
following					the moderate		
whiplash					/severe group		
injury					(p<0.01).		

EMG = electromyography

A.1.3. Acute physical musculoskeletal impairment evidence summary

Table 9: Summary of evidence for included studies in acute physical musculoskeletal impairment.

Sub- category	Studies	Population	Measurement	Conclusion	Evidence Summary
Muscle	(Rastovic et	75 people WAD	Isometric muscle	Isometric muscle fatigue during testing can be a useful	1-Sig
Function	al., 2017)	75 controls	fatigue	indicator.	
			clinical test		
(Independen					
t					
cohorts n=1)					

Muscle	(Sterling, Jull,	66 acute WAD	Electromyography	Overactivity in superficial neck flexors in people with	1-Sig
Performance	Vicenzino,	20 controls		acute WAD.	
	Kenardy, et				
(Independen	al., 2003)				
t					
cohorts n=1)					

A.1.4. Chronic physical musculoskeletal impairment

Trigger point

Category: Physical Musculoskeletal Impairment

Sub-category: Trigger point - Chronic and mixed WAD studies (>3mon) (n=1)

Table 10: Summary of included studies (chronic trigger point)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Comparison Population	Comments	Significant
(Ettlin et al., 2008) A distinct pattern of myofascial findings in people after whiplash injury	Prevalence and distribution of trigger points in the neck and shoulder musculature in WAD, fibromyalgia, nontraumatic chronic cervical syndrome, endogenous depression, and healthy controls	47 WAD (>6mo)	21 fibromyalgia (>6mo) 17 people with chronic cervical syndrome (>6mo) 15 people with endogenous depression (>6mo) 24 healthy control group	Trigger points	People with WAD had significantly higher prevalence of positive trigger points in the semispinalis capitis muscle than any of the control groups (P<.05). For all other muscles, no difference between groups.	People with whiplash showed a distinct pattern of trigger point distribution that differed significantly from other groups and healthy subjects. The semispinalis capitis muscle was more frequently affected by trigger points in people with WAD.	Significant Prevalence WAD> C

Cervical range of motion

Category: Physical Musculoskeletal Impairment

Sub-category: Cervical range of motion - Chronic and mixed WAD studies (>3mon) (n=7)

Table 11: Summary of included studies (chronic cervical range of motion)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Antonaci et al., 2002) 3D kinematic analysis and clinical evaluation of neck movements in people with whiplash injury	To compare accuracy of computerised ROM vs clinical evaluation in WAD and healthy controls	70 acute and chronic WAD Grade II and III people	46 healthy volunteers	Cervical Range of Motion Computerised ROM	Cervical ROM significantly reduced in people with whiplash compared with vs controls (p<0.05). Left rotation p<0.005.	Reduced ROM in people with acute and chronic WAD	Significant ROM WAD <c< td=""></c<>
(Grip et al., 2003)* Classification of neck movement patterns related to WAD using neural networks	To determine the predictive value of a 3-D computerised neck movement analyser for WAD	59 people with chronic WAD (>3mo) (51% female)	56 healthy controls (48% female)	Cervical Range of Motion 3D -motion capture	Computerised BPNN (back propagation neural network) ROM analysis of people with chronic WAD had a sensitivity of 0.90 and specificity of 0.88 in identifying people with WAD from controls.	Computerised BPNN movement analysis may be useful in classifying people with chronic WAD.	Significant ROM WAD <c< td=""></c<>

(Ohberg et al., 2003)* Chronic WAD and neck movement measurements: an instantaneous helical axis approach	To determine whether neck movement analysis can distinguish between people with chronic WAD and healthy controls	59 people with chronic WAD (>3mo) (51% female)	56 healthy controls (48% female)	Cervical Range of Motion	Neck movement analysis was able to distinguish people with chronic WAD from controls in terms of reduced speed of movement and reduced range of movement in all directions (p<0.001)	Neck movement analysis distinguished people with chronic WAD from healthy controls regarding speed of movement and range of movement in all directions.	
(Armstrong et al., 2005) Head and neck position sense in whiplash patients and healthy individuals and the effect of the cranio- cervical flexion action	To examine ROM and position sense impairment in people with WAD vs healthy controls	23 people with chronic WAD (57% female)	23 healthy controls (65% female)	Cervical Range of Motion 3-Space Fastrak	Significant reduction in ROM (p<0.05) in WAD.	Reduced ROM in people with chronic WAD	Significant ROM WAD <c< td=""></c<>
(Dall'Alba et al., 2001) Cervical range of motion discriminates between asymptomatic persons and those with whiplash	Comparative study of cervical ROM in asymptomatic vs whiplash subjects	114 people with chronic WAD (>3mo) (82% female)	89 asymptomatic volunteers (54% female)	Cervical Range of Motion Computerized, electromagnetic, motion-tracking device	ROM measures combined with age, sex data correctly categorized 90.3% of subjects (sensitivity 86.2%, specificity 95.3%)	Reduced cervical ROM is a characteristic of chronic WAD	Significant ROM WAD <c< td=""></c<>

(Kaale et al., 2007) Active range of motion as an indicator for ligament and membrane lesions in the upper cervical spine after a whiplash trauma	Active range of motion as an indicator for ligament and membrane lesions in the upper cervical spine after a whiplash trauma	87 participants with WAD II (65.5% female)	29 control participants (65.5% female)	Cervical Range of Motion CROM goniometer	Significant differences for all ranges of motion except side bending to the left. Adjusted differences in mean values were 10° (extension), 7° (rotation right) and 7° (rotation left), 7° (flexion), 4° (side- bending, right) and 3° (side-bending, left), respectively.	Soft tissue lesions may affect neck motion as reflected by AROM. However, since lesions to different structures seem to affect the same movement, AROM alone is not a sufficient indicator for soft-tissue lesions to a specific structure in the upper cervical spine.	Significant ROM WAD <c< th=""></c<>
(Malik et al., 2017) Assessment of Range of Movement, Pain and Disability Following a Whiplash Injury	To assess long term function after whiplash injury	28 symptomatic WAD and long- standing neck pain (Group B) (46% female) 27 symptomatic WAD and no neck symptoms (Group C) (52% female)	24 no WAD but long- standing neck pain (Group A) (63% female) 85 control people (Group D) (69% female)	Cervical Range of Motion Goniometry	Comparing the four groups using a one- way ANOVA showed a significant difference between the groups (p<0.001). There is Significant difference in ROM between symptomatic WAD and control groups. No difference between idiopathic neck pain and controls.	Whiplash injury with chronic problems cause a significantly decreased cervical range of movement with a higher pain score. People with shorter duration of whiplash symptoms appear to do better in the long-term	Significant ROM WAD <c< td=""></c<>

2 papers reported same cohort - Grip 2003, and Ohberg 2003

Muscle Performance/Postural Changes

Category: Physical Musculoskeletal Impairment

Sub-category: Muscle performance/ Postural Changes (Electromyography, Kinematic) - Chronic and mixed WAD studies (>3mon) (n=7)

Table 12: Summary of included studies (chronic muscle performance)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Descarreaux et al 2007)	To establish if	17 participants	14 healthy	Muscle	The average time to	Indicate that WAD	Significant
01 01., 2007)	WAD can		505/0015	Postural	significantly longer	attempting to	Impairment
Neuromuscul	produce			changes	for WAD [110.93	reproduce isometric	WAD>C
ar control of the head in	extension and			Flectromvogr	(13.20)] N than for	to peak force than	
an isometric	flexion forces			aphic (EMG)	healthy controls	normal subjects	
force	with precision			Surface	[169.83 (14.54)]. A		
task:	evaluate if			Isometric	in peak force		
comparison	different			neck	variability was also		
of whiplash	neuromuscular			extension and flexion	observed in the WAD		
healthy	strategies can				differences were		
controls	be observed				noted for absolute		
	healthy and						
	WAD subjects						

(Helgadottir et al., 2010)* Altered scapular orientation during arm elevation in people with insidious onset neck pain and whiplash- associated disorder.	Whether there is a pattern of altered scapular orientation during arm elevation in people with insidious onset neck pain (IONP) and WAD compared to asymptomatic people	23 participants with WAD II (>6 mo) (87% female)	22 insidious onset neck pain (IONP) (>6 months) (90% female) 20 control subjects (85% female)	Muscle activation/ Postural changes Kinematic EMG surface	WAD group demonstrated an increased elevation of the clavicle compared to the asymptomatic group and the IONP group (P<.05), and reduced scapular posterior tilt on the nondominant side compared to the IONP group (P<.05)	Suggests that differences may exist in the nature of the impairments between these groups of people.	Significant Impairment WAD>C
Helgadottir, Kristjansson, Einarsson, et al. (2011)* Altered activity of the serratus anterior during unilateral arm elevation in patients with cervical disorders.	To investigate whether there is a pattern of altered activity in the serratus anterior (SA) and trapezius in people with insidious onset neck pain (IONP) and WAD	27 participants with WAD II (>6 mo) (89% female)	22 insidious onset neck pain (IONP) (>6 months) (90% female) 23 symptomatic subjects (78% female)		Significantly delayed onset of serratus anterior muscle activation and less duration of muscle activity in the IONP group (P< .05), and in the WAD group (P< .01) compared to the asymptomatic group. No statistical difference was found between the symptomatic groups. There were no group main effects or interaction effects for the upper, middle and lower trapezius.	Suggest that the disturbance in the onset of muscle activation of the serratus anterior muscle may occur as a general response to chronic neck pain	

(Helgadottir, Kristjansson, Mottram, et al., 2011)* Altered Alignment of the Shoulder Girdle and Cervical Spine in Patients With Insidious Onset Neck Pain and Whiplash- Associated Disorder	Whether there is a pattern of altered alignment of the shoulder girdle and the cervical and thoracic spine in people with neck pain.	23 participants with WAD II (>6 months) (87% female)	21 insidious onset neck pain (IONP) (>6 months) (90% female) 20 symptomatic subjects (85% female)		A difference was found between the symptomatic groups on the left side. In contrast, the WAD group revealed an increased scapular anterior tilt (p < .03) and the IONP group showed a decreased clavicle elevation (p = .02).	A different manifestation was observed between people with IONP and WAD on the left side in clavicle elevation and scapular anterior tilt, suggesting that a difference may exist impairments between these groups	
--	---	---	---	--	--	--	--

(Voerman et al., 2007) Upper trapezius muscle activation patterns in neck- shoulder pair patients and healthy controls	Investigating whether people with neck-shoulder complaints from different aetiologies show comparable muscle activation patterns, characterised by higher activation and lower relaxation levels of the trapezius muscles compared to healthy controls	20 participants with WAD (>3 months) (60 % female)	21 with work- related musculoskelet al disorders (WMSD) (10% female) 20control subjects (60% female)	Muscle activation/ Postural changes EMG surface Upper trapezius	No clear evidence for abnormal muscle activation patterns in people with WMSD and people with WAD compared to healthy controls	No convincing evidence was found for comparable muscle activation patterns between people with WMSD and people with WAD	NS
(Nederhand et al., 2000) Cervical muscle dysfunction in the chronic WAD grade I	To determine whether surface EMG of the upper trapezius can distinguish people with chronic WAD II from healthy controls	18 people with chronic WAD (>6mo) (83% female)	19 healthy controls (78% female)	Muscle activation/ Postural changes EMG surface Upper trapezius	Surface EMG of the upper trapezius showed decreased ability to relax these muscles after exercise in people with chronic grade II WAD. No significance data provided.	EMG shows decreased relaxation of trapezius muscles after exercise for people with chronic WAD vs controls.	Significant Ability to relax muscle WAD <c< td=""></c<>
(Vikne et al., 2013) Muscle activity and head	Compared head kinematics and muscle activation in relatively	15 participants with chronic WAD (>6mo) (60% female)	15 heathy controls (60% female)	Muscle activation/ Postural changes	The findings in the present study of generally reduced displacement, peak acceleration, deceleration and	Simple, unconstrained head movements in participants with chronic WAD are accomplished with reduced velocity and	Significant

kinematics in unconstraine d movements in subjects with chronic neck pain; cervical motor dysfunction or low	unconstrained neck movements at three different speeds in participants with and without chronic WAD. In addition, comparisons were made taking both movement velocity and displacement into consideration.			Head kinematic EMG surface Sternocleido mastoid and splenius muscles	velocity at the maximum (M) speed conditions for the WAD group compared to controls	displacement but with normal muscle activation levels and movement patterns for a given velocity and displacement.	
(Kristjansson & Jonsson, 2002) Is the sagittal configuration of the cervical spine changed in women with chronic whiplash syndrome? A comparative computer assisted radiographic assessment, 2002	To compare cervical lordosis in people with normal and chronic whiplash	41 chronic WAD (100% female)	39 with chronic neck pain (100% female) 39 asymptomatic controls (100% female)	Postural changes Cervical lordosis	Non-significant difference in ratio of lower to upper cervical lordosis in WAD group. Significant difference for C4-5 level (3 degrees, 95%CI 0.8-5.2, p=0.007)	Cervical lordosis may be greater in people with chronic WAD	Significant

* 3 papers reported on the same cohort - Helgadottir 2010, Helgadottir, Kristjansson, Einarsson, et al. (2011) and Helgadottir, Kristjansson, Mottram, et al., 2011

Muscle Function

Category: Physical Musculoskeletal Impairment

Sub-category: Muscle Function (endurance, strength) - Chronic and mixed WAD studies (>3mon) (n=6)

Table 13: Summary of included studies (chronic muscle function)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Woodhouse, Liljeback, et al., 2010) Reduced head steadiness in whiplash compared with non- traumatic neck pain	Investigate head steadiness during isometric neck flexion in subjects with chronic whiplash- associated disorders (WAD), those with chronic non-traumatic neck pain and healthy subjects.	56 participants with WAD I-II (>6 months). (60% female)	57 with chronic nontraumatic neck pain (>6 months) (68% female) 57 asymptomatic subjects (49% female)	Muscle Function EMG surface Isometric neck flexion fatigue	Significantly decreased head steadiness (low load task) WAD compared with in the other 2 groups. The difference was explained largely by severe levels of neck pain and dizziness. No group differences in the high-load task.	Reduced head steadiness during an isometric holding test was observed in a group of WAD.	Significant
(Kumbhare et al., 2005) Measuremen t of cervical flexor endurance following whiplash	To assess discriminant validity of cervical flexor endurance test between people with WAD and controls	71 people with acute/chronic WAD (69% female)	160 normal controls (56% female)	Muscle Function Cervical flexor endurance test	People with WAD demonstrated significantly poorer neck flexor endurance (p<0.001).	People with acute and chronic WAD demonstrated significantly poorer cervical flexor endurance than normal controls.	Significant

(Stenneberg et al., 2022) Clinical characteristi cs differ between patients with non- traumatic neck pain, patients with whiplash- associated disorders, and pain-free individuals	To compare clinical characteristics between people with WAD, with NTNP, and pain-free individuals in primary care physiotherapy	168 people acute and chronic (73.8% female)	336 pain-free people (73.8% female) 336 people with non- traumatic neck pain (NTNP) (73.8% female)	Muscle Function Endurance clinical test	Both groups scored significantly worse than pain-free individuals on all characteristics. People with WAD had less muscle endurance (-5.5 seconds) than those with NTNP. Acute versus chronic Neck flexor muscle endurance, a statistically significant difference between the groups.	WAD is a more severe condition than NTNP and should be considered a separate subgroup. A different approach in clinical practice and research is required for WAD and NTNP.	Significant Muscle endurance WAD <c< th=""></c<>
(Baydal- Bertomeu et al., 2011) Neck motion patterns in whiplash- associated disorders: quantifying variability and spontaneity of movement	Quantify some of the features of neck motion patterns and analyse the differences between healthy and WAD neck motion patterns	30 participants with WAD - (50%female)	29 controls (52% female)	Muscle Function Endurance video- photogramm etry.	WAD group showed significant reductions in the range of motion and both the maximum angular velocity and acceleration compared to the control group (p<0.001).	Reduction in amplitude and speed of flexion- extension motion in WAD	Significant
(Pearson et al., 2009) Maximal voluntary isometric neck strength	To quantify maximal voluntary o isometric neck forces in healthy subjects and individuals	14 participants with WAD I-II. (42% female)	healthy group28 (43% female)	Muscle Function Maximal voluntary isometric force (MVIF)	Extension (P<.0001), retraction (P<.0001), and left lateral flexion (P = .03) forces were significantly lower for the WAD group compared to the	Cervical strength was lower in individuals with WAD. Particularly in extension, retraction and left lateral flexion.	Significant Strength WAD <c< td=""></c<>

deficits in adults with whiplash- associated disorders and association with pain and fear of movement	with whiplash- associated disorder (WAD)			Multi- Cervical Unit (MCU)	healthy group. Group differences for other directions were not statistically significant.	Strength deficits were not clearly linked to psychological factors.	
(Peolsson et al., 2014) Function in patients with cervical radiculopath y or chronic whiplash- associated disorders compared with healthy volunteers	To examine whether any differences in function and health exist between people with cervical radiculopathy (CR) due to disk disease scheduled for surgery and people with chronic whiplash- associated disorders (WADs) and to compare measures of persons' physical function with those obtained from healthy volunteers	215 people with chronic WAD (64% female)	101 healthy controls (50% female)	Muscle Function General performance Endurance test	Patient groups exhibited significantly lower performance than the healthy group in all physical measures (Sagittal and frontal AROM, Hand strength, neck muscle endurance flexion and extension, P <.0005). Exception for neck muscle endurance in flexion for women (P > .09).	Patients had worse values than healthy individuals in almost all physical measures. There was a trend toward worse results for people with CR than people with WAD.	Significant Muscle endurance WAD <c< td=""></c<>

EMG = Electromyography

A.1.5. Chronic physical musculoskeletal impairment evidence summary

Table 14: Summary of evidence for included studies in chronic physical musculoskeletal impairment

Sub- category	Studies	Population	Measurement	Conclusion	Evidence Summary
Trigger points (Independent cohort n=1)	(Ettlin et al., 2008)	47 WAD; 21 fibromyalgi; 17 chronic cervical syndromes 15 endogenous depressions 24 controls	Prevalence of trigger points	Trigger point distribution differed significantly in QAD from other patient groups.	1 - Sig
Cervical Range of Motion (Independent cohorts n=6)	(Antonaci et al., 2002)	70 acute and chronic WAD Grade II-III 46 controls	Computerised ROM	Reduced ROM in acute and chronic WAD.	6 - Sig
	(Grip et al., 2003) (Ohberg et al., 2003)*	59 WAD 56 controls	3D -motion capture	Neck movement analysis was able to distinguish people with chronic WAD from controls.	
	(Armstrong et al., 2005)	23 WAD 23 controls	3-Space Fastrak	Reduced ROM in people with chronic WAD.	
	(Dall'Alba et al., 2001)	114 WAD 89 controls	Computerized electromagnetic, motion-tracking device	Reduced cervical ROM is a characteristic of chronic WAD.	
	(Kaale et al., 2007)	87 WAD II 29 controls	CROM goniometer	Differences in neck motion in all directions.	

	(Malik et al., 2017)	28 WAD and long- standing neck pain 27 WAD and no neck 24 no WAD and neck pain 85 controls	Goniometer	Mean ranges of movement reduced in WAD.	
Muscle performance /postural changes (Independent cohorts n=6)	(Descarreaux et al., 2007)	17 WAD I-II; 14 controls	EMG surface	A significant increase in peak force variability was observed in the WAD group.	5 - Sig 1 - NS
	(Helgadottir et al., 2010) (Helgadottir, Kristjansson, et al., 2011) (Helgadottir, Kristjansson, Mottram, et al., 2011)	27 WAD II 22 insidious onset neck pain; 20 controls	Kinematic EMG surface	Increased elevation of the clavicle reduced scapular tilt in WAD. Disturbance in the onset of muscle activation	
	(Voerman et al., 2007)	20 WAD 21 work-related musculoskeletal disorders 20 control	EMG surface Upper trapezius	No clear evidence for abnormal muscle activation patterns in WAD	
	(Nederhand et al., 2000)	18 chronic WAD 19 controls	EMG surface Upper trapezius	Decreased relaxation of trapezius muscles after exercise for chronic WAD	

	(Vikne et al., 2013)	15 chronic WAD 15 controls	EMG surface Sternocleidomastoi d and splenius muscles	Chronic WAD move with less velocity and displacement compared with healthy controls	
	(Kristjansson & Jonsson, 2002)	41 chronic WAD 39 with chronic neck pain 39 symptomatic controls	Postural changes	Cervical lordosis may be greater in people with chronic WAD	
Muscle Function (Independent cohorts n=6)	(Woodhouse, Liljeback, et al., 2010)	56 WAD I-II 57 chronic nontraumatic neck pain. 57 asymptomatic subjects	Isometric neck flexion fatigue EMG surface	Reduced head steadiness during an isometric holding test was observed in a group of WAD.	6 - Sig
	(Kumbhare et al., 2005)	71 mixed WAD 160 controls	Cervical flexor endurance test	People with acute and chronic WAD demonstrated significantly poorer cervical flexor endurance than normal controls.	
	(Stenneberg et al., 2022)	124 mixed WAD; 336 controls	Endurance clinical test	People with WAD had less muscle endurance compared to people with NTNP.	
	(Baydal- Bertomeu et al., 2011)	30 WAD III; 29 controls	Endurance video- photogrammetry.	Reduction in amplitude and speed of flexion-extension motion in WAD	
	(Pearson et al., 2009)	14 WAD I-II 28 controls	Maximal voluntary isometric force Multi-Cervical Unit (MCU)	Cervical strength was lower WAD. Particularly in extension, retraction and left lateral flexion.	
	(Peolsson et al., 2014)	215 WAD 101 controls	Neck muscle endurance test	WAD group exhibited lower performance in neck muscle endurance for neck and extension test, expect in flexion for women	

Tahle	15. Evidence	to decision	framework	(nhysical	musculoskeletal	imnairment i	n acute W/AD)
rable	IJ. LVIUEIICE	LO DECISIÓN	namework	(physical	musculoskeletal	ппрантиент п	acute WAD

Strength of association								
How substantial are the	How substantial are the assessed outcome differences between people with WAD and control populations?							
Judgement	Research evidence	Additional considerations						
 Trivial 	Consistent findings across the included studies that	The results are consistent with the previous guideline and						
• Small	suggest impairment in muscle function and performance.	literature.						
 Moderate 	Although two studies showed significance when comparing							
∘ Large	WAD to control groups, there is only one study for each							
○ Varies	category and the findings are overall inconclusive.							
 Don't know 								
Undesirable Effects								
How substantial are the	e undesirable anticipated effects associated with the assessm	ent method?						
Judgement	Research evidence	Additional considerations						
∘ Large	Not reported.	Some people may have a temporary increase in symptoms						
 Moderate 		when performing higher load tests.						
 Small 								
• Trivial								
○ Varies								
 Don't know 								
Balance of effects								
Does the balance betwe	een desirable and undesirable effects favour assessing or not	assessing these factors?						
Judgement	Research evidence	Additional considerations						
 Favours not 	Strong recommendation for measuring the factor:	Reduction in ROM is an adverse prognostic indicator (see						
assessing	assessing ROM.	Prognostic Section in the Guideline) and hence should be						
 Probably favours 	Although there is no study in ROM for acute WAD,	assessed. It is also assessed as part of the Canadian C-spine						
not assessing	assessing ROM is a key component to determine the WAD	rule.						
 Does not favour 	grade.	For the other measurements, they could be performed if						
either assessing or	Does not favour either assessing or not assessing: muscle	clinically indicated. This is consistent with other guidelines						
not assessing	function and performance.	and musculoskeletal conditions where muscle function and						
 Probably favours 		performance can be impaired following injury.						
assessing								
 Favours assessing 								
 Varies 								
 Don't know 								
Resources required								
How large are the reso	urce requirements (costs)?							
Judgement	Research evidence	Additional considerations						
--	--	--						
 Large costs 	One study used the clinical fatigue test, which does not	Overall, most of the factors can be assessed in clinical						
 Moderate costs 	involve cost.	settings using lower cost equipment or clinical tests.						
 Negligible costs 	Moderate cost associated with assessing neck muscle	ROM is commonly assessed in clinical practice using						
and savings	activation using EMG.	inclinometers, which are easily available.						
 Moderate savings 		Muscle endurance can be assessed using a clinical test.						
 Large savings 		Resources on how to perform these tests are in My Whiplash						
• Varies		Navigator.						
○ Don't know		https://mywhiplash.com.au/						
		Strength can be assessed using a hand-dynamometer and						
		the cost will vary depending on the dynamometer.						
		Muscle performance can be assessed using EMG which may						
		have a moderate cost						
Equity								
What would be the Imp	act on health equity?							
Judgement	Research evidence	Additional considerations						
 Reduced 	No evidence.	HCP's can easily perform ROM and the clinical versions of						
 Probably reduced 		muscle assessment tests (e.g., endurance) as part of routine						
 Probably no impact 		consultation and with no additional costs.						
 Probably increased 								
 Increased 								
○ Varies								
○ Don't know								
Acceptability								
Is the assessment meth	nod acceptable to key stakeholders?							
Judgement	Research evidence	Additional considerations						
• No	Not reported.	After explaining how to perform the tests, most tests are						
\circ Probably no		acceptable to people with WAD. People expect physical						
\circ Probably yes		assessments as part of routine consultation with HCPs.						
• Yes								
 ∨ Varies 								
 Don't know 								
Feasibility								
Is the assessment meth	nod feasible to implement?							
Judgement	Research evidence	Additional considerations						

○ No	Not reported.	Most of the test/assessment can be easily performed in the
 Probably no 		clinical setting using simple equipment. Allied health
 Probably yes 		professionals are trained to perform most of the tests, while
• Yes		GP's may lack time to perform additional tests (other than
○ Varies		ROM).
 Don't know 		

A.1.6. Conclusions (physical musculoskeletal impairment in acute WAD)

VOTE 1: Assessment of range of motion (ROM) in people with acute WAD

Are you for or against healthcare professionals assessing the following physical musculoskeletal impairment factors in people with acute WAD: Cervical ROM

Type of recommendation (cervical ROM in people with acute WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
0	0	0	0	•

Recommendations

There was strong guideline panel consensus that healthcare professionals assess the following: range of motion in people with acute WAD.

(Panel vote summary: 12/12 100% strong for)

Justification

Evidence

• No evidence in assessment studies for ROM.

Consistency

• Strong evidence in prognostic studies that poor cervical ROM is associated with poor prognosis, hence assessment is recommended to determine prognosis.

• Cervical ROM assessment is also important to classify the Grade of WAD.

Subgroups considerations

n/a

Implementation considerations

Indications:

• Assessing Cervical ROM is required to determine WAD Grade and inform treatment direction.

How to assess:

- ROM can be measured in clinical settings using an inclinometer. Most reliable method is positioned in the midline of the forehead for lateral flexion or in the vortex of the head in the line with the nose for flexion and extension.
- Resources on how to perform CROM are freely available from Whiplash Navigator <u>https://mywhiplash.com.au/</u>
- Normative age-related values are found on MyWhiplashNavigator

https://www.mywhiplash.com.au/node/160/#standard-assessment

VOTE 2: Assessment of muscle function and performance in people with acute WAD

Are you for or against healthcare professionals assessing the following physical musculoskeletal impairment factors in people with acute WAD: cervical muscle function and cervical muscle performance.

Type of recommendation (muscle function and performance in people with acute WAD)

Strong consensus	Conditional consensus	Conditional consensus	Conditional consensus	Strong consensus				
recommendation for not	mmendation for not recommendation to not		commendation for not recommendation to not		ndation for not recommendation to not recommendation to not		recommendation for	recommendation for
measuring the factor(s)	measuring the factor(s) measure the factor (s)		suring the factor (s) or measuring the factor (s)					
		not						
0	0	•	0	0				

Recommendations

The guideline panel cannot reach consensus for or against assessing the following the following: cervical muscle function and performance in people with acute WAD.

(Panel vote summary: 10/11 (91%) neutral), 1/1 (9%) conditional for).

Justification

Evidence

There were two studies (hence inconclusive), however both found an impairment in people with WAD (in muscle performance and endurance respectively).

Acceptability and feasibility

Assessment of muscle function/performance is commonly performed by HCPs and is expected by people as part of routine consultation.

- People at low risk of poor recovery do not need to have a complicated assessment as they are expected to recover well.
- HCPs could consider assessing these factors in people at medium/ high risk of poor recovery if clinically indicated.
- HCPs could consider assessing these factors when clinically indicated (e.g., person reports difficulty performing functional tasks requiring neck endurance (lifting head off bed, holding head up).

Implementation considerations

Indications:

Do not assess these in people at low risk (of poor recovery) as they will recover well without these assessments. Consider assessing these factors in people at medium/ high risk of poor recovery if clinically indicated.

- Clinical indications for assessing cervical muscle function may include when the person reports difficulty performing functional tasks requiring neck endurance (lifting head off bed, holding head up). *"Head feels heavy" (consumer quote)*
- Clinical indications for assessing cervical (or axio-scapula) muscle performance may include when people report "muscle tightness or tension" in neck or axio-scapula muscles that require re-training. "Tight feeling in muscle in front of neck" (consumer quote)

How to assess:

- Healthcare professionals should explain the purpose of these assessments to the person.
- Consider muscle performance tests before function (lower load before endurance) as it could be provocative.
- Examples of how to assess muscle performance and muscle endurance are provided in (Whiplash Navigator https://mywhiplash.com.au/).

What to do:

• If assessed to be impaired, this may require rehabilitation (see neck-specific exercises in treatment recommendations).

 Table 16: Evidence to decision framework (physical musculoskeletal impairment in chronic WAD)

Strength of association		
How substantial are the	e assessed outcome differences between people with WAD	and control populations?
Judgement	Research evidence	Additional considerations
○ Trivial	Moderate and consistent evidence for physical	These findings are consistent with previous guidelines and
∘ Small	musculoskeletal impairments in people with chronic	literature.
 Moderate 	WAD compared with controls or other pain groups in the	HCP's also need to consider that ROM and muscle function
∘ Large	following:	can vary depending on the person and their symptoms.
○ Varies	Cervical range of motion (ROM): 6/6 studies found	
○ Don't know	reduced ROM in people with chronic WAD.	
	 Muscle function: 6/6 studies showed a reduction 	
	in muscle function. Measured as strength and	
	endurance.	
	Muscle performance/postural changes: 5/6	
	studies showed impaired in chronic WAD were	
	significant. The assessment methods varied	
	among studies.	
Undesirable Effects	and a tool to an at the second of the second second second second at the second second	
How substantial are the	e undesirable anticipated effects associated with the assess	sment method?
Judgement	Research evidence	Additional considerations
○ Large	Not reported.	Some people may have a temporary increase in symptoms
 Moderate 		when performing higher load tests.
• Irivial		
Delense of offects		
Balance of effects	an desirable and undesirable offects forcur	at appagaing these feature?
ludgement	Performance and undesirable effects favour assessing or n	Additional considerations
Juagement	Research evidence	Additional considerations

 Favours not assessing Probably favours not assessing Does not favour either assessing or not assessing 	<u>Favours assessing:</u> Cervical ROM. <u>Probably favours assessing</u> : Muscle function <u>Does not favour assessing or not-assessing (neutral</u>): Muscle performance	Consistent with previous guideline and literature.
 Probably favours assessing Favours assessing 		
 Varies Don't know 		
Resources required	Irca requirements (casts)?	
ludgement	Research evidence	Additional considerations
 Large costs Moderate costs Negligible costs and savings Moderate savings Large savings Varies Don't know 	Studies used equipment such as goniometers, 3-D Motion Fastrack, EMG surface, kinematic analysis methods - video-photogrammetry, hand-dynamometer.	Additional considerations Overall, most of the factors can be assessed in clinical settings using lower cost equipment or clinical tests. ROM is commonly assessed in clinical practice using inclinometers, which are easily available. Muscle endurance can be assessed using a clinical muscle endurance test. Resources how to perform the test can be found here. https://mywhiplash.com.au/ Strength can be assessed using a hand-dynamometer. Cost will vary depending on the dynamometer. Muscle performance can be assessed using various methods including surface EMG, incurring moderate cost. https://mywhiplash.com.au/ Strength can be assessed using a hand-dynamometer. Cost will vary depending on the dynamometer. Muscle performance can be assessed using warious methods including surface EMG, incurring moderate cost. https://mywhiplash.com.au/ Strength can be assessed using a hand-dynamometer and the cost will vary depending on the dynamometer. Muscle performance can be assessed using EMG which may have a moderate cost
What would be the Imp	act on health equity?	
Judgement	Research evidence	Additional considerations

 Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	No evidence.	HCP's can easily perform ROM as part of routine consultation and with no additional costs. Muscle function and performance testing may require additional training by HCPs to implement these tests and effectively interpret their results.
Acceptability Is the assessment meth	od acceptable to key stakeholders?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	Not reported.	After explaining how to perform the test, most people with whiplash expect and accept these tests as part of routine consultation.
Feasibility Is the assessment meth	od feasible to implement?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	Not reported	Most of the assessments can be easily performed in the clinical setting using simple equipment. Allied health professionals are trained to perform most of the tests, while GP's might lack time to complete muscle tests, however, would routinely perform cervical ROM assessment.

A.1.7. Conclusions (physical musculoskeletal impairment in chronic WAD)

VOTE 1: Assessment of range of motion in people with chronic WAD

Are you for or against healthcare professionals assessing the following physical musculoskeletal impairment factors in people with chronic WAD: Cervical ROM?

Type of recommendation (cervical range of motion in people with chronic WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
Ο	0	0	0	•

Recommendations

There was strong guideline panel consensus that healthcare professionals assess the following: cervical range of motion in people with chronic WAD.

(Panel vote summary: 11/11 100% strong for)

Justification

- There is strong evidence that people with chronic WAD have poorer (significantly less) cervical ROM than controls or people with other neck pain conditions.
- Findings are consistent with previous guidelines.
- Assessing Cervical ROM is feasible to be performed by in a clinical setting by all primary HCP's.
- Cervical ROM assessment is also important to determine the grade of WAD and to evaluate treatment effectiveness.
- Trivial adverse effects with ROM assessment.

Subgroup considerations

n/a

Implementation considerations

Indications:

• Assessing CROM is required to determine WAD Grade and inform treatment direction.

How to assess:

• ROM can be measured in clinical settings using an inclinometer. Most reliable method is positioned in the midline of the forehead for lateral flexion or in the vertex of the head in the line with the nose for flexion and extension.

- Normative age-related values are found on MyWhiplashNavigator
- Resources on how to perform Cervical ROM are freely available from Whiplash Navigator

https://www.mywhiplash.com.au/node/160/#standard-assessment

VOTE 2: Assessment for muscle function in people with chronic WAD

Are you for or against healthcare professionals assessing the following physical musculoskeletal impairment factors in people with chronic WAD: cervical muscle function?

Type of recommendation (cervical muscle function in people with chronic WAD)

Strong consensus recommendation for not measuring the factor(s) o	Conditional consensus recommendation to not measure the factor (s) o	Conditional consensus recommendation for either measuring the factor (s) or not o	Conditional consensus recommendation for measuring the factor (s) •	Strong consensus recommendation for measuring the factor(s) o		
Recommendations						
There was guideline panel c chronic WAD.	onsensus to suggest that heal	thcare professionals assess t	he following: cervical muscle	function in people with		
(Panel vote summary: 12/12 10	00% conditional for)					
Justification						
• Moderate evidence f	or muscle function impairmen	t in people with chronic WAD	compared to the control grou	os.		
More common for mu	uscle function to be impaired i	n the chronic phase of people	with WAD.			
Assessment of musc	le function can be used to eva	luate the effectiveness of tre	atment.			
Subgroups consideration	S					
HCPs could consider assessing these factors when clinically indicated (e.g., person reports difficulty performing functional tasks						
requiring neck endurance (lifting head off bed, holding head up).						
Implementation considera	ations					

Indications:

• HCPs indications for assessing cervical muscle function may include when the person reports difficulty performing functional tasks requiring neck endurance (lifting head off bed, holding head up).

How to assess:

• Examples of how to assess muscle performance and muscle endurance are provided.

https://www.mywhiplash.com.au/content/higher-risk-assessments#motor-assessment

What to do:

• If assessed to be impaired, this may require rehabilitation (see neck-specific exercises in treatment recommendations).

VOTE 3: Assessment for muscle performance in people with chronic WAD

Are you for or against healthcare professionals assessing the following physical musculoskeletal impairment factors in people with chronic WAD: Cervical muscle performance?

Type of recommendation (muscle performance in people with chronic WAD)

Strong consensus	Conditional consensus	Conditional consensus	Conditional consensus	Strong consensus
recommendation for not	recommendation to not	recommendation for either	recommendation for	recommendation for
measuring the factor(s)	measure the factor (s)	measuring the factor (s) or	measuring the factor (s)	measuring the factor(s)
		not		
0	0	•	0	0

Recommendations

The guideline panel cannot reach consensus for or against assessing the following: cervical muscle performance in people with chronic WAD.

(Panel vote summary: 10/11 91% neutral; 1/11 9% conditional for)

Justification

- The evidence for impairments in muscle performance is inconclusive.
- There are different tests evaluated, hence heterogeneity in studies (e.g., scapular tilt, onset of muscle activation, abnormal trapezius activation pattern).

Subgroup considerations

n/a

Implementation considerations

Indications:

- People with chronic whiplash may require an assessment of muscle performance if clinically indicated. For example, report of "muscle tightness or tension" in neck or axio-scapula muscles that require re-training. Muscle performance may vary in people with chronic WAD. *How to assess:*
 - Examples of how to assess muscle performance (e.g., cranio-cervical flexion test) are provided in Whiplash Navigator

https://www.mywhiplash.com.au/content/higher-risk-assessments#motor-assessment

What to do:

• If assessed to be impaired, this may require rehabilitation (see neck-specific exercise in treatment recommendations).

A.2. Sensorimotor

What sensorimotor clinical assessments assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).

A.2.1. Executive summary

What Sensorimotor test/function should healthcare professionals assess in people with acute and chronic whiplash?

Acute whiplash: 6 studies evaluated sensorimotor function in people with whiplash compared with controls or other pain conditions. Five cross-sectional studies and one longitudinal study evaluated sensorimotor function in sub-groups of people with WAD. Summary of findings here:

- Cervical joint position error: 1/1 study found increased joint position error in people with acute WAD.
- Cervical movement sense: 1/1 study showed no differences in cervical movement sense in people with acute WAD.
- Oculomotor disturbance: 2/2 studies found oculomotor disturbance in people with acute WAD.
- Balance: 1/1 study found reduced balanced control in people with acute WAD

Chronic whiplash: 37 studies evaluated sensorimotor function in people with whiplash compared with controls or other pain conditions. Thirty-seven cross-sectional studies evaluated sensorimotor function in sub-groups of people with WAD. Summary of findings here:

- Cervical joint position error: 6/8 studies found increased joint position error in people with chronic WAD.
- Cervical movement sense: 4/5 study suggests that cervical movement sense is affected in people with chronic WAD.
- Oculomotor disturbance: 8/9 studies found oculomotor disturbance in people with chronic WAD.
- Balance: 10/10 studies found reduced balanced control in people with chronic WAD.
- Coordination test (Bimanual coordination test) 2/2 studies found people with chronic WAD are more susceptible to sensory disturbances.
- Others proprioception: 2/3 studies found proprioception is different in people with chronic WAD (e.g., shoulder proprioception)

A.2.2. Acute sensorimotor

Cervical joint position error

Category: Sensorimotor

Sub-category: Cervical joint position error - Acute and Subacute WAD (n=1 study)

Table 17: Summary of included studies (acute cervical joint position error)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Sterling et al., 2004) Characterization of acute whiplash- associated disorders,	To characterize acute whiplash injury in terms of motor and sensory dysfunction and psychological distress and compare	80 acute (<1 month) WAD graded II -III (WAD grouped into mild, moderate or severe symptoms based on NDI scores)	20 healthy controls (WAD grouped into mild, moderate, or severe symptoms based on NDI scores)	Cervical joint position error	The groups with severe or moderate symptoms demonstrated JPEs right rotation (P <0.01). No difference between the mild and control groups. The group with severe symptoms also showed greater JPE in extension (P	Increased joint position error in acute WAD subjects with moderate/severe symptoms	Significant JPE Severe WAD> mild, moderate and Control
	subjects with higher and lesser levels of pain and				<0.01) than the other two WAD groups (moderate and mild) and the control		
	disability				group.		

Cervical movement sense

Category: Sensorimotor

Sub-category: Cervical movement sense - Acute and Subacute WAD (n=1 study)

Table 18: Summary of included studies (acute cervical movement sense)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Eklund et	To determine	23 people	27 healthy	Cervical	Compared with	Suggest jaw-neck	NS
al., 2020)	how jaw and	with acute WAD)	controls	movement	controls, cases	motor function may be	
	head	(83% females)	without neck	sense	showed smaller jaw	affected in the acute	
Jaw-neck	movement		trauma		movement	stage after a whiplash	
motor	amplitudes		(56% female)	Jaw and head	amplitudes (P = .006)	trauma although the	
function in	and movement			movements	but no difference in	effects were minor.	
the acute	cycle times			during jaw	head movement		

stage after whiplash trauma	correlate with jaw and neck pain and neck disability in the acute stage after whiplash	opening- closing were recorded with. an optoelectronic system.	amplitudes, head/jaw ratios or movement cycle times.	
	trauma.			

Oculomotor disturbance

Category: Sensorimotor

Sub-category: Oculomotor disturbance - Acute and Subacute WAD (n=2 studies)

Table 19: Summary of included studies (acute oculomotor disturbance)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Solarino et	To prospective	14 with WAD	15 healthy	Oculomotor	At time 0 (baseline)	People with acute	Significant
al., 2009)	study was to	Acute (baseline)	volunteers	disturbance	and at time 90 days,	WAD may have	
	evaluate the				p1 latency was	alterations of	VEMPS
vestibular	cnanges in			Electromyog	significantly nigher	vestibular evoked	Latency
evoked	vestibular-			raphic	In people with	myogenic	WAD>C
nyogenic	evoked			activity	whiptash compared	potentials.	
(VEMDe) in	notontials				subjects on both		
whinlash	m\/FMPs in			binhasic	subjects of both sides $(n < 0.002)$ The		
iniury: a				myogenic	amplitude of p1-n1		
prospective	affected by			notentials	was significantly		
study	whiplash			recorded on	lower in people with		
	injury.			the tonically	whiplash at time 0		
				contracted	(p=0.003 on the right		
				sternocleido	and p=0.018 on the		
				mastoid	left), but not at 90		
				(SMS).	days.		

(Stiebel- Kalish et al.,	Examined the incidence of	57 people with acute WAD	39 controls with no pre-	Oculomotor disturbance	The absolute CISS score was higher in	Visual symptoms suggestive of CI	Significant
2018)	symptoms and findings	(56% female)	existing lack of	Questionnair	the WAD group	were reported more	Visual symptoms
The	consistent with		vision or	e, vision tests	control group	people with WAD	WAD > C
Discrepancy	Cl in a cohort		neurologic		(15.310.0 vs. 7.77.7; P < 0.001)	than control.	
Subjective	MVA-related		(66% female)				
and Objective Measures of	WAD compared with				Findings consistent		
Convergence	age-matched				insufficiency (CI)		
Insufficiency	control				occurred in 7.0% of		
Associated	pur tioipurito.				and 7.7% of control		
Disorder					participants (P =		
Control					0.30).		
Participants							

Balance

Category: Sensorimotor

Sub-category: Balance - Acute and Subacute WAD (n=1 study)

Table 20: Summary of included studies (acute balance)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Dehner et	To investigate	40 people with	40 controls	Balance	People with acute	People with acute WAD	Significan
al., 2008)	balance	acute WAD			whiplash injuries of	may have disturbed	t
	control in	(35% female)		Posturograp	the cervical spine	balance control	
Postural	people with			hy	achieved		Balance
control	acute WAD			platform.	significantly poorer		control
deficit in	grade II.				results for both		WAD < C
acute QTF				8 position	ST(Sigma) and		
grade II				tests were	FA(Sigma) than the		
whiplash				performed	healthy		
injuries					controls(p<0.001)		

Coordination test

Category: Sensorimotor

Sub-category: Coordination test- Acute and Subacute WAD (n=1 study)

Table 21: Summary of included studies (acute coordination test)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Daenen, Nijs, Roussel, Wouters, & Cras, 2012) Altered perception of distorted visual feedback occurs soon after whiplash injury: an experimental study of central nervous system processing	To investigate whether the pattern of sensations in response to sensorimotor incongruence differs between people suffering from acute and chronic WAD and healthy controls.	30 participants with acute WAD (47% female) 35 participants with chronic WAD (> 3 months) (74% female)	31 healthy controls (77% female)	Coordination Bimanual	Significantly more sensations were reported during the incongruent mirror stage compared to the incongruent control stage (P < .05). No significant difference was observed between the acute and chronic WAD groups (P > .05).	Altered perception of distorted visual feedback and suggest altered central sensorimotor nervous system. processing in people with acute WAD.	Significan t Visual responses WAD > C

A.2.4. Acute sensorimotor evidence summary

Table 22: Summary of evidence for included studies in acute sensorimotor

Sub- category	Studies	Population	Measurement	Conclusion	Evidence Summary
Cervical joint position error	(Sterling et al., 2004)	80 acute WAD II-III 20 controls	Joint position error Fastrak system	Increased joint position error in acute WAD subjects with moderate/severe symptoms	1 – Sig
(Independent _cohort n=1)					
Cervical movement sense (Independent cohort n=1)	(Eklund et al., 2020)	23 acute WAD 27 controls	Jaw and head movements during jaw opening-closing - optoelectronic system	No significant differences in head movement amplitudes in WAD compared to control.	1 – NS
Oculomotor disturbance	(Solarino et al., 2009) (Stiebel-	14 acute WAD 15 controls	Electromyographic activity VEMPs	WAD may have alterations of vestibular evoked myogenic potentials (VEMPs)	2 – Sig
studies n=2)	Kalish et al., 2018)	57 acute WAD 39 controls	Visual tests and questionnaire	Visual symptoms were reported more frequently among people with WAD than control.	
Balance (Independent cohort n=1)	(Dehner et al., 2008)	40 acute WAD 40 controls	Platform – 8 tasks	Acute WAD reduced balance control	1 – Sig
Coordination test (Independent cohort n=1)	(Daenen, Nijs, Roussel, Wouters, & Cras, 2012)	30 acute WAD 35 chronic WAD 31 controls	Bimanual Coordination Test	Indicate an altered perception of distorted visual feedback in WAD	1 – Sig

A.2.5. Chronic sensorimotor

Cervical joint position error

Category: Sensorimotor

Sub-category: Cervical joint position error - Chronic and mixed WAD studies (>3mon) (n=8 studies)

Table 23: Summary of included studies (chronic cervical joint position error)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Main Outcome	Comments	Significan t
(De Pauw et al., 2018) Motor impairment in patients with chronic neck pain: does the traumatic event play a significant role? A case- control study	To analyze differences in motor impairment between both groups, and assess the association with self- reported symptoms	35 people with chronic WAD (100% female)	38 people with chronic idiopathic neck pain. (100% female) 30 healthy controls (100% female)	Cervical joint position error A laser helmet. Rotations left/right, flexion/extensi on	Repositioning accuracy, measured via joint position. error, in WAD was significant. higher on the horizontal axis after performing flexion extensions compared with control.	WAD showing an increase error in the horizontal plane after extension and flexion	Significant JPE WAD >C
(Frydas et al., 2014) Discriminativ e validity of sensory evaluation in a whiplash- associated disorder II population	To determine whether differences in sensory evaluation occur post whiplash injury.	20 people with chronic WAD (65% female)	22 control participants with no history of whiplash/nec k injury (41% female)	Cervical joint position error Helmet with mounted laser for CPE	Discrimination between groups was not identified using separate logistic regressions on vibration or cold pain thresholds (thenar eminence) or on global flexion/extension/rig ht rotation. position errors (p>0.01).	Does not support the use. of vibration, CPT or JPE to distinguish individuals with CWADII with relatively mild levels of g self-report disability from control participants	NS discrimina tion between groups
(Grip et al., 2007) Variations in the axis of	To measure variations in the axis of motion (together with	22 subjects with WAD (> 3 months) (77%female)	21 with non- specific neck pain (< 3 months) (75% female)	Cervical joint position error Head relocation test	During flexion, the whiplash group had a larger constant repositioning error than the control	Measuring variation in the axis of motion together with target performance gives	Significant Flexion JPE WAD >C

motion during head repositioning a comparison of subjects with whiplash- associated disorders or non-specific neck pain and healthy controls	target performance) as a new approach to estimate proprioceptive ability for two groups of people with neck pain and one group of controls.		24 control subjects (75% female)	Rotation, flexion, extension	group (-1.8(2.9) ° vs. 0.1(2.4) °, P = 0.04). During axial rotation to the left, there was more variation in axis direction for neck pain groups as compared with controls (4.0(1.7)° and $3.7(2.4)$ ° vs. 2.3(1.9)°, P = 0.01 and 0.05).	objective measures on proprioceptive. ability that are difficult to quantify by visual inspection. Repositioning errors were in general small, suggesting it is not sufficient as a single measurement variable in a clinical situation	
(Feipel et al., 2006) Head repositioning accuracy in patients with WAD	To compare head repositioning error (HRE) in people with WAD and healthy controls	29 people with acute and chronic WAD (Grade I-III (62% female)	26 healthy controls (54% female)	Cervical joint position error electro goniometric device using helmet Axial rotation; flexion- extension and lateral bending	Greater HRE in people with WAD in a variety of tasks (p=0.009) However, differences were small and of questionable clinical significance (e.g. neutral blindfolded repositioning task – difference between groups)	Greater HRE in people with WAD in a variety of tasks (p=0.009)	Significant HRE WAD>cont rol
(Sjolander et al., 2008) Sensorimotor disturbances in chronic neck pain range of motion, peak velocity, smoothness of movement,	To evaluate sensorimotor functions in people with chronic neck pain	7 participants with WAD II-III (71% female)	9 with insidious neck pain (10% female) 16 control subjects (81% female)	Cervical joint position error Rotation task measured with electromagnet ic tracking system - repositioning acuity (VE) and bias (CE) and	WAD showed the poorest repositioning acuity and the largest ROM Variability	Concluded that jerky and irregular cervical movements and poor position sense acuity are characteristic sensorimotor symptoms in chronic neck pain	Significant variable error (VE). WAD>cont rol

and repositioning acuity				the variability of ROM.			
(Treleaven et al., 2003) Dizziness and unsteadiness following whiplash injury: characteristic features and relationship with cervical joint position error	To compare dizziness and unsteadiness symptoms with cervical joint position error (JPE) in a group of people with chronic WAD and healthy controls.	102 people with chronic WAD (>3mo) (72% female)	44 healthy controls (66% female)	Cervical joint position error Fastrak electromagnet ic device	WAD subjects had significantly greater JPE's than controls (p<0.02).	WAD subjects demonstrated significant JPE compared to normal controls.	Significant JPE WAD> C
(Woodhouse & Vasseljen, 2008) Altered motor control patterns in whiplash and chronic neck pain	Investigate motor control deficits in WAD compared to chronic non- traumatic neck pain and healthy controls in relation to the cervical range of motion (ROM), conjunct motion, joint position error and ROM- variability	56 participants with WAD I-II (>6 months). (60% female)	57 with chronic nontraumatic neck pain (>6 months) (68% female) 57 asymptomati c subjects (49% female)	Cervical joint position error Laser head and Fastrak sensor Cervical Rotation	There were no significant group differences in ROM- variability (SDmean) or JPE.	No group differences for JPE	NS
(Uremovic et al., 2007)	lo examine the loss of proprioception	60 participants with WAD (50% female)	60 control subjects (50% female)	position error	People with neck injuries were not able to return the	Subjects with recent cervical spine injuries	JPE

Impairment of proprioceptio n after whiplash injury	in people who had a whiplash injury.		Cervical Measurement System (CMS) assessed after 3months	head to the neutral position of 0° after 30° rotation, unlike 93.3% of the control were able to do it. People with a cervical spine injury showed significant impairment of proprioception in	incorrectly perceive their head position.	WAD> control
				proprioception in comparison with		
				healthy subjects (P<0.001)		

Cervical movement sense

Category: Sensorimotor

Sub-category: Cervical movement sense - Chronic and mixed WAD studies (>3mon) (n=6 studies)

Table 24: Summary of included studies (chronic cervical movement sense)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Main Outcome	Comments	Significan t
(Astrup et al., 2021) Impaired neck motor control in chronic whiplash and tension-type headache	1) Present a new method based on head laser tracking designed to measure head or hand movements, and 2) further investigate if people suffering from	22 people with chronic (>12mo) WAD (18% female)	19 people with chronic tension-type headache 37 symptomatic controls (27% female)	Cervical movement sense Laser tracking device To track a reference point moving on the wall	In the different runs (circle, square, different speeds), the mean distances between the reference point and the laser tracking point were larger in both patients' groups compared to controls.	Motor control of head movements is impaired in both chronic whiplash and tension- type headache and in whiplash also of the hand.	Significant Movement sense WAD> Control

	chronic whiplash or tension-type headache have impaired motor control of neck muscles			fixed to the forehead or held in the hand. Tracked moves in runs of a circle or a square at three different speeds 10, 20, or 30 cm/s.			
(Ernst et al., 2019) Clinical assessment of cervical movement sense in those with neck pain compared to asymptomati c individuals	Examine differences in CMS between age- and gender- matched individuals with NP and asymptomatic controls to determine suitable cut- off measures for clinical interpretation. We also examined subgroup differences between people with idiopathic neck pain (INP) and WAD.	13 people with chronic WAD (>3mo) (54% female)	25 people with chronic idiopathic neck pain (56% female)	Cervical movement sense Clinical tests using head mounted laser device - F8 or ZZ pattern	WAD subjects performed the ZZ pattern significantly. faster, and generated on average 5.8 more errors than INP. subjects, a non- significant trend (p=0.11). and non-significant for F8 (p=0.02)	People with whiplash performed the ZZ task faster with similar errors to those with idiopathic neck pain, but not significant	NS F8 and ZZ WAD = Idiopathic neck pain

(Grip et al., 2008) Cervical helical axis characteristic s and its center of rotation during active head and upper arm movements- comparisons of whiplash- associated disorders, non-specific neck pain and asymptomati c individuals (same cohort as above Grip 2007)	to investigate the helical axis and its centre of rotation in people with non-specific neck pain or pain due to whiplash injury as compared with matched controls.	22 subjects with WAD (>3months) (77% female)	21 with non- specific neck pain (<3months) (75% female) 24 control subjects (75% female)	Cervical movement sense Motion capture system Helical axis and its center of rotation during fast head movements (side rotation and flexion/exten sion) and ball catching	Upper body movements were more restricted in WAD and NP groups, even though the NP group showed the largest average head rotation. A small but significant anterior displacement of CR and a tendency to a downward displacement was observed in the WAD group	An increased number of irregularities in axis movement among people with neck pain implied disturbances in the sensorimotor control	Significant Movement sense WAD> Control
(Sandlund et al., 2008) Acuity of goal-directed arm movements to visible targets in chronic neck pain (same as Roijezon 2011)	To evaluate end-point acuity in goal- directed arm movements in subjects with chronic neck pain,	21 participants with WAD (>3 months) (52% female)	24 with non- specific neck pain (>3 months) (58% female) 22 pain-free subjects (59% female)	Cervical movement sense Test of end- point acuity in goal- directed pointing. Electromagn etic tracking system Fastrack	End-point acuity, controlled for peak velocity, was reduced for both neck-pain groups. Similar spatial error patterns across all groups indicated no direction-specific reduction.	Acuity of goal-directed arm movements can be reduced in chronic neck pain	Significant Movement sense WAD < C

(Vangronsvel d et al., 2007) An experimental investigation on attentional interference by threatening fixations of the neck in patients with chronic whiplash syndrome	To investigated attentional disruption in people with chronic whiplash syndrome using the primary task paradigm.	40 with WAD (65% females)	40 healthy controls (65% females)	Cervical movement sense task performance (neck fixation)	Patients showed increased RTs during both threat conditions compared to the previous baseline condition, controls did not show this delay	The patients showed a more pronounced deterioration of performance compared to controls when the neck rotation and extension fixations were introduced. Within the groups, neither catastrophic thinking nor fear predicted the magnitude of the performance deterioration	Significant
(Woodhouse, Stavdahl, et al., 2010) Irregular head movement patterns in whiplash patients during a trajectory task (same cohort as Myran et al. 2008)	To investigate whether a trajectory head movement task can differ between people with WAD, people with chronic non-traumatic neck pain (CNP) and asymptomatic controls	35 participants with WAD I-II (>6 months). (66% female)	45 with chronic nontraumatic neck pain (>6 months) (71% female) 49 asymptomatic subjects (50% female)	Cervical movement sense Electromagn etic tracking system Fastrack Figure of eight	Significantly higher angular RMS velocity was found in the WAD group compared to the two other groups for the slow-paced test (3–4 and 4–5 Hz frequency bands) and the moderate paced test (3–4 Hz frequency band) indicating irregular and uncoordinated movements.	People with whiplash showed a consistent lack of movement smoothness when compared to people with CNP and asymptomatic controls.	Significant Angular Velocity WAD> C &CPN

(Vangronsveld et al., 2007) not added in the summary voting count.

Oculomotor disturbance

Category: Sensorimotor

Sub-category: Oculomotor disturbance- Chronic and mixed WAD studies (>3mon) (n=9 studies)

Table 25: Summary of included studies (chronic oculomotor disturbance)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome _assessed	Main Outcome	Comments	Significant
(Bexander & Hodges, 2012) Cervico- ocular	I o investigate intricate coordination between eye and neck/movemen	8 participants with WAD II (89% female)	11 pain-free control (63% female)	Oculomotor disturbance Electromyog raphy Electro-	The superficial muscle splenius capitis (SC) was active in both directions of cervical rotation in contrast	Redistribution of activity between neck muscles during cervical rotation and increased	Oculomotor Disturbance WAD>C
coordination during neck rotation is distorted in people with	t and compare the relationship between eye position/move			oculography Cervical rotation	to activity only with right rotation in pain- free controls (p< 0.001).	interaction between eye and neck muscle activity in people with	
whiplash- associated disorders	ment and neck muscle activity with pain-free control			was performed with five gaze conditions	The activity of obliquus capitis inferior (O) and Multifidus (MF) varied between	WAD.	
				involving different gaze directions	directions of cervical rotation, unlike the non-direction- specific activity in		
				relative to cervical rotation	controls (p < 0.01). The effect of horizontal gaze direction on neck muscle FMG was		
					augmented compared to controls		
(Kelders et al., 2005) The cervico- ocular reflex is increased	To determine whether the cervico-ocular reflex may permit an objective	8 people with WAD (mixed duration) (75% female)	8 healthy controls (25% female)	Oculomotor disturbance Infrared eye- tracking device to	Significant difference in cervico-ocular reflex between people with WAD and controls (p=0.037).	Significant difference in cervico-ocular reflex between people with WAD and controls	Significant cervico-ocular reflex WAD> control

in whiplash injury patients	diagnosis of WAD			track both horizontal and vertical eye movements			
(Kongsted et al., 2007) Are smooth pursuit eye movements altered in chronic whiplash- associated disorders? A cross- sectional study	To evaluate whether smooth pursuit eye movements differed between people with long-lasting whiplash- associated disorders and controls	34 participants with WAD (82% female)	60 control participants (55% female)	Oculomotor disturbance smooth pursuit neck torsion (SPNT) electrooculo graphy	Eye movements were no different in people with WAD than in our controls, regardless of neck position (P <0.06)	Disturbed smooth pursuit eye movements do not appear to be a distinct feature in people with chronic WAD	NS
(Janssen et al., 2015) Smooth Pursuit Eye Movement Deficits in Patients with Whiplash and Neck Pain are Modulated by Target Predictability	Investigating the effect of static neck torsion on smooth pursuit in response to both predictably and unpredictably moving targets using video- oculography	11 people with chronic WAD	20 healthy controls	Oculomotor disturbance Video- oculography 9 runs in which the chair was positioned in a specific rotation (e.g., 0°, 15° 30°, 45°)	WAD had reduced smooth pursuit gains and smooth pursuit gain decreased due to neck torsion P < 0.00. Healthy controls showed higher gains for predictably moving targets compared with unpredictably moving targets, whereas people with neck pain had similar gains in response to both types of target movements.	Smooth pursuit of WAD is affected.	Significant Smooth pursuit gains WAD <c< td=""></c<>

(Prushansky et al., 2004) Electro- oculographic (EOG) measures in patients with chronic whiplash and healthy subjects a comparative study	To examine the value of EOG measures in differentiating people with WAD from controls	26 people (with chronic WAD (>6mo) (62% female)	23 healthy controls (70% female)	Oculomotor disturbance Chart ENG for Windows Eye Movement Test System	Neck torsion did not influence eye movement performance of either the WAD or healthy groups. However, compared with the healthy group, people with WAD had significantly lower smooth pursuit velocity gain (SPVG) (p = 0.01) and prolonged saccadic latency(p = 0.001), irrespective of neck position	Despite scattered differences that reached significance, the electro- oculographic measures used in this study do not seem to offer a clinically relevant method for differentiating between people with WAD and normal subjects.	Significant smooth pursuit velocity gain WAD <c< th=""></c<>
(Tjell et al., 2002) Smooth pursuit neck torsion test (SPNT) – a specific test for WAD	To determine if the SPNT can differentiate between WAD and alternative diagnoses (non-traumatic neck pain)	75 people with chronic WAD (>6mo); 50 with dizziness (62% female) and 25 without dizziness (68% female)	30 healthy controls (50% female) 20 controls with vertigo (55% female) 20 controls with meniere (60% female)	Oculomotor disturbance Corneoretina l potential recorded binocularly by surface Ag/AgCl electrodes during a smooth pursuit neck torsion (SPNT) test	The validity of the SPNT test for diagnosing WAD was Sensitivity 72% and specificity 92%. Healthy volunteers used to determine normal values.	SPNT was useful in differentiating people with WAD from controls.	Significant
(Treleaven et al., 2008) Comparison of sensorimotor	To determine if differences exist in reported symptoms and in outcomes of	20 participants with WAD (>3 months) (75% female)	20 (female) vestibular subjects (45% female	Oculomotor disturbance Smooth pursuit neck	Subjects with whiplash had significantly higher SPNT test scores than both control and subjects with	Differences in sensorimotor disturbances between subjects with discreet whiplash and those	Significant SPTN score WAD>C

disturbance between subjects with persistent whiplash- associated disorder and subjects with vestibular pathology associated with acoustic neuroma	sensorimotor tests (cervical joint position error [JPE], neck- influenced eye movement control, postural stability) between subjects with persistent whiplash and subjects with unilateral vestibular pathology associated with acoustic neuroma.		20 control subjects (70% female)	torsion (SPNT) test	acoustic neuroma (P<.01)	with vestibular pathology associated with acoustic neuroma. The results support the SPNT test as a test of cervical afferent dysfunction.	
(Treleaven et al., 2005a) Smooth pursuit neck torsion test in WAD: relationship to self- reports of neck pain and disability, dizziness and anxiety	To determine if the SPNT can differentiate between people with WAD and healthy controls and examine the relationship between SPNT values pain, dizziness and anxiety in people with WAD	100 chronic WAD (50 with dizziness, 50 without) and 50 healthy controls (76% female)	50 healthy controls (60% women)	Oculomotor disturbance Electro- oculography (EOG) used to measure and record eye movement during the smooth pursuit neck torsion test	Significant differences in SPNT between dizzy and non-dizzy WAD groups and between both those groups and healthy controls (p<0.01).	The SPNT test was useful in differentiating people with chronic WAD from controls.	Significant
(Treleaven et al., 2011)	Investigated eye, head co-	20 participants with WAD	20 control subjects	Oculomotor disturbance	WAD had significantly less	Deficits in gaze stability and head	Significant

Head eye co- ordination in and gaze w stability in w subjects with as persistent co whiplash associated disorders	vith persistent whiplash and symptomatic	(75% remate)	(65% female)	Gaze stability task, Sequential head eye movement task	to the left, range of head movement during the gaze stability task and decreased velocity of head movement in head eye co- ordination and gaze stability tasks	eye co-ordination may be related to disturbed reflex activity associated with decreased head range of motion and/or neck pain	tasks WAD < C
---	--	--------------	--------------	---	--	--	------------------

Balance

Category: Sensorimotor

Sub-category: Balance- Chronic and mixed WAD studies (>3mon) (10 studies)

Table 26: Summary of included studies (chronic balance)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Main Outcome	Comments	Significan t
(Cote et al.,	Quantify the	10 participants	10 age-and-	Balance	The displacement	Suggest that	Significant
2003)	characteristics	grade II WAD	matched	Kinematic	combined head,	may alter stretch reflex	
Whiplash-	of the postural	(50% female)	healthy group.	and EMG	arms and trunk	threshold and/or elicit a	
associated	response		(50% female)	postural	centres of mass was	learned response for	
affect	to sudden			Stabilization	in persons with WAD	may be direction	
postural	support			Postural	In the WAD group,	specific.	
reactions to	surface			reactions to	the activation onset		
antero-	translations in			anteroposteri	of the		
posterior	a WAD group,			or	lumbar erector		
support	and to			support	spinae were less		
surface	compare these			surface	affected by		

translations during sitting	patterns with those of healthy individuals control group			translations during sitting.	perturbation direction and the sternocleidomastoid muscle, a neck flexor, showed a trend towards being activated later, compared to the healthy group		
(Field et al., 2008) Standing balance: A comparison between idiopathic and whiplash- induced neck pain	directly compared balance between these groups to determine if neck pain precipitated by trauma resulted in greater or different balance impairments	30 WAD II (77% female)	30 with idiopathic neck pain and (>3 months) (77% female) 30 healthy controls (80% female)	Balance Clinical Test of Sensory Integration and Balance (CTSIB) during comfortable stance — standing on a firm surface and on a soft surface	WAD had significantly greater sway energy and RMS amplitude than the idiopathic group in comfortable stance tests on a soft surface (F>4.4, p<0.04). WAD had greater RMS, but significantly less sway energy than the idiopathic group in most narrow stance tests in the anterior posterior direction F>5.8, p <0.02).	Balance deficits exist in both subjects with WAD and idiopathic neck pain compared to controls; however, differences in balance strategies may exist between the neck pain groups	Significant Balance deficits WAD>C
(Findling et al., 2011) Trunk sway in patients with and without, mild traumatic brain injury after whiplash injury	Assessed the addition effect of mild traumatic brain injury (MTBI) on the balance control of people who simultaneousl y suffered a whiplash	44 people with WAD and MTBI 36 people with WAD without MTB	7 healthy controls	Balance Trunk sway for a battery of stance and gait tests	Sway measures for standing in one leg and two-legged stance tasks were not significant between WAD groups, but were increased in both groups compared to control (P>0.05)	A similar pattern of balance impairment was present in people with whiplash injury with and without MTBI. However, the impairment was greater for stance and complex gait tasks in people with WAD with MTBI.	Significant Postural Sway WAD>C

(Juul- Kristensen et al., 2013) Increased neck muscle activity and impaired balance among females with whiplash- related chronic neck pain: a cross s-sectional study	associated disorder (WAD). To investigate neck muscle activity and postural control in people with whiplash- associated disorder compared with healthy controls.	10 people with chronic WAD (100% female)	10 healthy controls (100% female)	Balance Three balance tasks (Romberg stance with open and closed eyes, and a one- legged stance) and an arm perturbation task EMG activity of the anterior scalene, sternocleido mastoid, neck extensors and upper	Greater trunk sway than people with WAD without MTBI for stance tasks and complex gait tasks During balance tasks with closed eyes and one-legged stance, the relative mean activity of all 4 muscles was significantly increased in WAD compared with healthy controls. Postural sway was also significantly increased (P <0.001)	WAD had higher relative neck muscle activity and larger postural sway during normal balance tasks compared with control subjects.	Significant Postural Sway WAD> Control
				trapezius muscles			
(Madeleine et al., 2011) Characterizati	To characterize the variability of postural	11 participants with WAD I-II (>6 months). (46% female)	11 asymptomatic healthy subjects (46% female)	Balance Force Platform	The amplitude of variability of the centre of pressure was larger among	The analysis of postural control dynamics revealed increased amplitude of postural	Significant Postural instability
control deficit	people with				compared with	variability.	WAD> C

in whiplash patients by means of linear and nonlinear analyses - A pilot study	chronic whiplash injury			Static postural tasks with eyes open, eyes closed and eyes open and speaking.	controls (P < 0.001) while fractal dimension was lower (P < 0.001). The sample entropy increased during both eyes closed and a simple dual task compared with eyes open (P < 0.05).	and decreased signal dimensionality related to the deficit in postural stability found in WAD	
(Roijezon et al., 2011) The slow and fast components of postural sway in chronic neck pain	To understand of the nature of altered postural control in neck pain by studying the slow and fast components of body sway.	21 participants with WAD (>3 months) (52% female)	24 with non- specific neck pain (>3 months) (58% female) 21 pain-free subjects (61% female)	Balance Force plate Barefooted in the Romberg position; with feet together, heel-to-heel and toe-to- toe, with closed eyes and arms crossed over the chest.	Increased magnitude of the slow sway component was found in WAD, but not in NS.	Increased magnitude of the slow sway component implies an aberration in sensory feedback or processing of sensory information in WAD.	Significant slow sway WAD> C & NS
(Stokell et al., 2011) Dynamic and functional balance tasks in subjects with persistent whiplash: A pilot trial	To determine whether subjects with whiplash had deficits in dynamic and functional balance tasks when compared to a healthy control group	20 participants with WAD (>3 months) (70 %female)	20 healthy participants (85% female)	Balance Clinical tests of balance (Single leg stance, Step test, Fukuda stepping test, Tandem walk test, Singleton test, Stair	Subjects with whiplash demonstrated significant deficits (p < 0.01) in single leg stance with eyes closed, the step test, tandem walk on a firm and soft surface, stair walking, and the timed 10 m walk with	The whiplash subjects demonstrated significant impairment in selected clinical measures in comparison with healthy control subjects.	Significant Deficits WAD>C

	(Gandelman-	Compare	11 people with	14 healthy	walking test, Timed 10 m walk) Balance	and without head movement when compared to the control subjects Compared to healthy subject's sway index	The severity of the	Significant
	Postural stability in patients with different types of head and neck trauma in comparison to healthy subjects	control in people with different types of head and neck trauma to healthy subjects.	12 WAD mild head trauma without loss of consciousness (WHTNLC)	Controts	5 tests using eyes open and closed with stable and moving platform	(SI) was significantly higher in people with WHTNLC in three of the tests. There were no significant differences within the patient group according to type of injury. When time following the injury was considered, the SI was non- significantly higher within the first week after trauma compared to other time intervals.	people with head and/or neck trauma is not uniform and is influenced by the type of trauma.	Sway index WHTNLC> C
	(Treleaven et al., 2005b) Standing balance in persistent whiplash: a comparison between subjects with and without dizziness	To assess balance responses in subjects with chronic WAD with and without dizziness versus healthy controls	101 people with chronic WAD (>3mo)(50 with dizziness (76% women), 50 without (76% women)	51 healthy controls (60% women)	Balance Clinical Test for Sensory Interaction in Balance over the 6 conditions was performed in comfortable stance	Significant difference in balance in chronic WAD subjects with and without dizziness versus controls (p<0.05). Greater balance deficits noted in people with WAD with dizziness.	People with chronic WAD with dizziness demonstrated poorer balance than those without dizziness and healthy controls.	Significant Poor balance WAD > C
	(Yu et al., 2011)	To determine whether the neck torsion	20 participants with WAD II (>3 months) with a	20 control subjects	Balance Computerise	The whiplash group had significantly greater rms	Neck torsion manoeuvre may lead to greater postural	Significant Postural
-	The effect of	positions	score of at least		d force plate	amplitude in the AP	deficits in individuals	deficits

neck torsion on postural stability in subjects with persistent whiplash	change balance responses in the WAD population when compared to asymptomatic individuals	10 out of 100 on the Neck Disability Index (NDI)	With eye closed in comforta stance un 5 condition neutral h head turr to left an right and neck tors to left an	direction following neck torsion compared to the control group (p < 0.03) ons: lead, ned id ision ad	with persistent WAD and provides further. evidence of neck torsion to identify abnormal cervical afferent input, as an underlying cause of balance disturbances in WAD.	WAD>C
			right			

Coordination test

Category: Sensorimotor

Sub-category: Coordination test - Chronic and mixed WAD studies (>3mon) (n=2)

Table 27: Summary of included studies (chronic coordination test)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Main Outcome	Comments	Significan t
(Daenen, Nijs,	To evaluate	35 people	31 healthy	Bimanual	The pattern of	Exacerbation of	Significant
Roussel,	whether a	with chronic	controls (77%	coordination	reported sensory	symptoms and/or	
Wouters,	visually	WAD	female)	test	changes during the	additional sensations	Altered
Van, et al.,	mediated	(74% female)			congruent and	due to	perception
2012)	incongruence				incongruent stages	reducing/disturbing the	
	between motor				significantly differed	visual input during	WAD>C
Sensorimotor	output and				between both	action in people with	
incongruence	sensory input				groups (P < 0.05).	chronic WAD.	
exacerbates	aggravates						
symptoms in	symptoms and						
patients with	triggers						
chronic	additional						
whiplash	sensations in						

associated disorders: An experimental study	people with chronic WAD.						
(Don et al., 2017) The effect of visual feedback of the neck during movement in people with, chronic whiplash- associated disorders: An experimental study	To determine whether SMI causes sensory disturbances or pain in people with chronic WAD and healthy controls.	30 people with chronic WAD (67% female)	34 healthy controls (68% female)	Bimanual Coordination Test	A statistically significant difference in a perceived sensory disturbance between conditions was found in the WAD group (P<.001).	Chronic WAD are more susceptible to sensory disturbances owing to Sensorimotor incongruence (SMI)	Altered perception WAD>C

Other proprioception

Category Sensorimotor

Sub-category: Others Proprioception - Chronic and mixed WAD studies (>3mon) (n=3)

Table 28: Summary of included studies (chronic others proprioception)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Main Outcome	Comments	Significant
(Sandlund et	To determine	37 people with	41 healthy	Proprioception	Subjects with WAD	Shoulder	Significant
al., 2006)	the predictive	and III (>6mo)	CONTROLS	shoulder	demonstrated	proprioception test able to differentiate	WAD> C
Predictive and	discriminative		(63% female)	proprioception	position sense	chronic WAD group	
discriminative	value of	(54% female)		test involving	when compared to	from healthy controls.	
value of	shoulder			active	controls (p=0.003)		

shoulder proprioception tests for patients with WAD	proprioception tests for people with WAD			ipsilateral arm position- matching			
(Treleaven & Takasaki, 2015) High variability of the subjective visual vertical test of vertical perception, in some people with neck pain - Should this be a standard measure of cervical proprioception?	To investigate the most sensitive SVV error measurement to detect group differences between no neck pain control, idiopathic neck pain (INP) and WAD subjects.	42 people with chronic WAD (>3mo) (64% female)	48 healthy controls (72% female) 36 people with chronic idiopathic neck pain (>3mo) (55% female)	Proprioception Vertical perception testing	The INP group had significantly (p < 0.03) greater VE and RMSE when compared to both the control and WAD groups. There were no differences seen between the WAD and controls.	People with INP (not WAD), had an altered strategy for maintaining the perception of vertical by increasing variability of performance.	NS
(Richter et al., 2010) Long-term adaptation to neck/shoulder pain and perceptual performance in a hand laterality motor imagery test	The effect of neck/shoulder pain on the performance in a hand laterality motor imagery	21 participants with WAD (52% female)	24 (58% female) with non-specific neck pain (58% female) 22 pain-free subjects (58% female)	Laterality Hand laterality test task with digitised right- or left-hand stimuli presented at five different stimulus angles	Main results revealed that the subjects afflicted with whiplash injury on the average exhibited a faster response pattern than symptom-free healthy controls.	Perceptual learning and may reflect different stages of adaptation to neck pain.	Significant

A.2.6. Chronic sensorimotor evidence summary

Table 29: Summary of evidence for included studies in chronic sensorimotor
Sub- category	Studies	Population	Measurement	Conclusion	Evidence Summary
Cervical joint position error (Independent cohorts n=8)	(De Pauw et al., 2018)	35 WAD 38 chronic idiopathic 30 controls	Laser helmet Rotations, flexion, and extension	Increased joint position error in flexion and extension in WAD.	6 - Sig 2 - NS
	(Frydas et al., 2014)*	20 WAD 22 controls	Laser Helmet Rotations, flexion, and extension	Does not distinguish individuals with CWADII with relatively mild levels of self-report disability from control	
	(Grip et al., 2007)	22 WAD 21 non-specific neck pain 30 controls	Electric torch in a Helmet Head relocation test	Great JPE in WAD group than control group	
	(Feipel et al., 2006)	29 WAD 26 controls	Electro goniometer Rotation; flexion- extension and lateral bending	Greater HRE in people with WAD in a variety of tasks	
	(Sjolander et al., 2008)	7 WAD 9 insidious neck pain 16 controls	Electromagnetic tracking system Repositioning acuity (VE) and bias (CE) and the variability of ROM	WAD showed the poorest repositioning acuity and the largest ROM Variability	
	(Treleaven et al., 2003)	102 WAD 44 controls	Electromagnetic tracking system	WAD subjects demonstrated significant JPE compared to normal controls.	
	(Woodhouse & Vasseljen, 2008)	56 WAD 57 non-chronic traumatic neck pain 57 controls	Laser head and Fastrak sensor Cervical Rotation	No group differences in ROM-variability (SDmean) or JPE	
	(Uremovic et al., 2007)	60 WAD 60 controls	Cervical Measurement System	Subjects with recent cervical spine injuries incorrectly perceive their head position.	

Cervical movement sense (Independent cohorts n=5)	(Astrup et al., 2021)	22 WAD 19 chronic headaches 37 controls	Laser tracking device Movements of a circle or a square 10, 20, or 30 cm/s.	A small but highly significant dyscoordination of head movements and hand in WAD than control	4 – Sig 1 – NS
	(Ernst et al., 2019)	13 WAD 25 chronic idiopathic neck pain	Head-mounted laser device Figure of 8 (F8) and ZZ pattern.	No significant difference in the clinical test between WAD and idiopathic neck pain	
	(Grip et al., 2008)	22 WAD 21 non-specific neck pain 24 controls	Motion capture system during fast head movement	An increased number of irregularities in axis movement in neck pain	
	(Sandlund et al., 2008)	24 WAD 24 non-specific neck pain 22 controls	Test of end-point acuity in goal- directed pointing	Acuity of goal-directed arm movements can be reduced in chronic neck pain.	
	(Woodhouse, Stavdahl, et al., 2010)	35 WAD 45 non-chronic traumatic neck pain 49 controls	Electromagnetic tracking system Fastrack Figure of 8	People with whiplash showed a consistent lack of movement smoothness when compared to people with CNP and asymptomatic controls.	
Oculomotor disturbance (Independent cohorts n=9)	(Bexander & Hodges, 2012)	8 WAD 11 controls	Electromyography (SC, O and MF) Cervical rotation was performed with five gaze conditions.	Evidence of redistribution of activity between neck muscles during cervical rotation and increased interaction between eye and neck muscle activity in people with WAD.	8 – Sig 1 – NS
	(Kelders et al., 2005)	8 WAD 8 controls	Eye-tracking device to track both horizontal and vertical eye movements.	Altered cervico-ocular reflex in people with WAD.	
	(Kongsted et al., 2007)	34 WAD 60 controls	Smooth pursuit neck torsion (SPNT)	Eye movements were no different in people with WAD.	

			- electrooculography		
	(Janssen et al., 2015)	11 WAD 20 controls	Video-oculography – different rotation chair position	WAD had reduced smooth pursuit gains and smooth. pursuit gain decreased due to neck torsion.	
	(Prushansky et al., 2004)	26 WAD 23 controls	SPNT test	WAD had significantly lower smooth pursuit velocity gain However, electro-oculographic do not seem to offer a clinically relevant method.	
	(Tjell et al., 2002)	100 WAD 73 controls	SPNT test -Electro- oculography	SPNT was useful in differentiating people with WAD from controls.	
	(Treleaven et al., 2008)	20 WAD 20 Vestibular 20 controls	SPNT test	Subjects with whiplash had significantly higher SPNT test scores	
	(Treleaven et al., 2005a)	100 WAD 50 controls	SPNT test Electro- oculography	The SPNT test was useful in differentiating people with chronic WAD from controls.	
	(Treleaven et al., 2011)	20 WAD 20 controls	Gaze stability task	Deficits in gaze stability and head eye coordination	
Balance (Independent cohorts n=10)	(Cote et al., 2009)	10 WAD 10 controls	Postural stability during sitting	Individuals with WAD may alter their stretch reflex threshold.	10 – Sig
	(Field at al				
	(Field et al., 2008)	30 WAD 20 idiopathic neck pain 30 controls	Clinical Test of Sensory Integration and Balance	Compared to controls, balance disturbance in subjects with WAD and idiopathic neck pain.	
	(Findling et al., 2011)	30 WAD 20 idiopathic neck pain 30 controls 44 people with WAD and mild traumatic brain injury (MTBI); 36 people with WAD without MTBI	Clinical Test of Sensory Integration and Balance Trunk sway for a battery of stance and gait tests	Compared to controls, balance disturbance in subjects with WAD and idiopathic neck pain. Balance deficit in WAD compared to control and for complex task higher deficit in WAD with MTBI	

	(Madeleine et al., 2011)	11 WAD; 11controls	Static postural with eyes closed and open and speaking	Postural instability found in WAD	
	(Roijezon et al., 2011)	21 WAD 24 non-specific neck pain; 21control	Barefooted in the Romberg position	Increased magnitude of the slow sway component in WAD compared to control group.	
	(Stokell et al., 2011)	20 WAD 20 controls	Several Clinical tests of balance	WAD demonstrated significant impairment in postural stability in comparison to control group.	
	(Gandelman- Marton et al., 2016)	11 WAD 14 controls	Balance states with eyes open and closed and stable and unstable platform	Sway index (SI) was significantly higher in people with WHTNLC in three of the tests.	
	(Treleaven et al., 2005b)	101 WAD 51 controls	Clinical Test for Sensory Interaction in Balance	Greater balance deficits noted in people with WAD with dizziness.	
	(Yu et al., 2011)	20 WAD 20 controls	Balance under 5 different conditions	Neck torsion manoeuvre may lead to greater postural deficits in individuals with persistent WAD.	
Coordination Test (Independent cohorts n=2)	(Daenen, Nijs, Roussel, Wouters, Van, et al., 2012)	35 WAD 31 controls	Bimanual coordination test	WAD present an exacerbation of symptoms and additional sensations in response to visually mediated changes during action.	2 – Sig
	(Don et al., 2017)	30 WAD 34 controls	Bimanual coordination test	Chronic WAD are more susceptible to sensory disturbances owing to sensorimotor incongruence (SMI).	
Others – Propriocepti on (Independent cohorts n=3)	(Sandlund et al., 2006)	37 WAD 34 controls	Shoulder proprioception	Shoulder proprioception test able to differentiate chronic WAD group from healthy controls.	2 – Sig 1–NS
	(Treleaven & Takasaki, 2015)	42 WAD 36 idiopathic neck pain	Vertical perception testing	People with INP (not WAD), had an altered strategy for maintaining the perception of vertical.	
	(Richter et al., 2010)	21 WAD 24 non-specific neck pain	Hand laterality test	Perceptual learning and may reflect different stages of adaptation to neck pain.	

22 controls

* Discrimination between groups

Table 30: Evidence to decision framework (sensorimotor in acute WAD)

Strength of association		
How substantial are the	e assessed outcome differences between people with WAD	and control populations?
Judgement	Research evidence	Additional considerations
○ Trivial	These findings were consistent across all studies.	Consistent with previous guideline and literature with the
• Small	However, only few studies evaluated sensorimotor	subgroup consideration (medium/high risk).
 Moderate 	function in people with acute WAD.	
∘ Large	Evidence was small for the following sensorimotor	
○ Varies	test/function assessments in acute WAD:	
○ Don't know	 Cervical joint position error: small association 1/1 study found an increased joint position error in acute WAD subjects with moderate/severe symptoms. Cervical movement sense: one study found no significant differences in head movement amplitudes in WAD compared to control. Oculomotor disturbance: small association with 2/2 studies showing ocular disturbance in WAD than control. Balance: small association with 1/1 study showing reduced balance control in WAD. Coordination test: 1/1 study indicating an altered perception of distorted visual feedback in WAD. 	
Undesirable Effects		
How substantial are the	e undesirable anticipated effects associated with the assess	
Judgement	Research evidence	Additional considerations
 Large Madarata 	No evidence of adverse effects reported.	Some tests can provoke some symptoms (e.g., dizziness), and
		It is important to inform the person that it might occur.
		Healthcare professionals may select only one of two tests to
		assess these impairments instead of performing multiple
\circ values		cests on the same day, as adverse effects can be

Balance of effects					
Does the balance between desirable and undesirable effects favour assessing or not assessing these factors?					
Judgement	Research evidence	Additional considerations			
 Favours not 	Does not favour either assessing or not assessing:	HCP's might assess some factors depending on the person's			
assessing	Cervical joint position error, Cervical movement sense,	presentation. More likely to be applicable to medium-high			
 Probably favours not 	Oculomotor disturbance, Balance, and Coordination	risk subgroups.			
assessing	tests in acute WAD.				
 Does not favour 					
either assessing or					
not assessing					
 Probably favours 					
assessing					
 Favours assessing 					
○ Varies					
 Don't know 					
Resources required					
How large are the resou	Irce requirements (costs)?				
Judgement	Research evidence	Additional considerations			
 Large costs 	A few studies used laboratory equipment that is not	Most factors can be assessed in clinical settings using lower-			
 Moderate costs 	feasible for healthcare professionals (e.g., kinematic	cost equipment or clinical tests.			
 Negligible costs and 	analyses). However, most studies reported clinical	Cervical joint position error is commonly assessed in clinical			
savings	equivalent tests that healthcare professionals could use	practice as a mount, a laser pointer, and a target.			
 Moderate savings 	at negligible cost. E.g., smooth pursuit neck torsion test	Cervical movement sense is commonly assessed in clinical			
 Large savings 	(SPNT); Tandem walk test)	practice using a laser pointer following a pattern, fixed with			
○ Varies		a light headband.			
 Don't know 		The oculomotor disturbance is clinically assessed (i.e.,			
		smooth pursuit neck torsion test) using an object that people			
		must follow with their eyes. The test can assist in			
		differentiate dizziness due to WAD from vestibular			
		symptoms.			
		Balance can be performed using in a clinical setting using			
		example, tandem stance.			
		Available from Whiplash Navigator			
		https://mywhiplash.com.au/			
Equity					
What would be the Impa	act on health equity?				
Judgement	Research evidence	Additional considerations			

 Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	Not reported.	All tests can be performed using the clinical equivalent at low cost. However, HCP's will require some training and expertise in performing and interpreting tests as some results/symptoms are not frequently seen in all people (e.g., oculomotor impairment).
Acceptability	nod accentable to key stakeholders?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	Not reported.	Clinical versions of tests are considered acceptable.
Feasibility	od feasible to implement?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	Not reported	The tests are minimally invasive and do not require specialised equipment. Allied HCPs are more likely to perform the tests. They will require training (not routinely taught in undergraduate programs) and require some expertise to interpret as some results/symptoms are not frequently seen in all people (e.g., oculomotor – impairment). Performing those tests may not be feasible for GP's due to time limitations.

A.2.7. Conclusions (sensorimotor in acute WAD)

VOTE 1: Assessment of cervical joint position error, cervical movement sense, oculomotor disturbance, balance, and coordination test in people with acute WAD

Are you for or against healthcare professionals assessing the following sensorimotor factors in people with acute WAD: cervical joint position error, cervical movement sense, oculomotor disturbance, balance, and coordination test?

Type of recommendation (cervical joint position error, cervical movement sense, oculomotor disturbance, balance, and coordination test in people with acute WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong recommendation consensus for measuring the factor(s)
0	0	•	0	0

Recommendations

The guideline panel cannot reach consensus for or against assessing the following sensorimotor tests: Cervical joint position error, cervical movement sense, oculomotor disturbance, balance, and coordination test in people with acute WAD.

(Panel vote summary: 11/12 (92%) neutral, 1/12 (8%) conditional for).

Justification

- Evidence is small with only a few studies for those factors in people with acute WAD.
- However, most studies demonstrate a greater impairment for people with acute WAD compared with controls or other pain conditions.

Subgroup considerations

- Do not assess these factors in people who are low risk (of poor outcome) as they will recover well without requiring more complicated assessments.
- People at medium/high risk of poor outcome and/or those with dizziness are more likely to present with sensorimotor impairment.

Implementation considerations

Indications:

- Do not assess these in people at low risk (of poor recovery) as they will recover well without these assessments.
- Consider assessing these factors in people at medium/ high risk of poor recovery if clinically indicated, such as when people report dizziness or impairment in balance.

Considerations:

- Some of the tests can provoke or increase symptoms. Avoid performing multiple tests on the same day to avoid symptom accumulation. HCPs are advised to prioritise the required tests based on clinical presentation.
- Consider differential diagnosis of dizziness when interpreting tests (e.g., concussion, vestibular)
- Training may be required to performing and interpreting tests. It is important to understand normative values and values that indicate impairment (e.g., error of > 4.5 degrees indicates impairment for cervical joint position error test)

How to assess:

 Resources on how to perform, normative values and threshold for cervical joint position error, cervical movement sense (CMS), smooth pursuit neck torsion test (SPNT), Balance – e.g., tandem step test) assessments are freely available from Whiplash Navigator: https://www.mywhiplash.com.au/content/higher-risk-assessments#sensorimotor-assessment

What to do:

- If the persons are impaired HCPs are recommended to rehabilitate the impairment and may be directed to recommended treatments (e.g., dizziness specific exercise see guideline treatment section). Note that dizziness specific interventions included balance components.
- Exercise needs to be safely performed (supervised) if at risk of falls (reduced balance).
- Referral to whiplash specialist.

Table 31: Evidence to decision framework (sensorimotor in chronic WAD)

Strength of association						
How substantial are the assessed outcome differences between people with WAD and control populations?						
Judgement	Research evidence	Additional considerations				
○ Trivial	Moderate evidence was found between the following	Consistent with previous guidelines and literature.				
• Small	sensorimotor assessments in people with chronic WAD.					
 Moderate 	• Cervical joint position error: 6/8 studies found an					
∘ Large	increased joint position error compared with					
\circ Varies	control group.					
\circ Don't know	 Cervical movement sense: 4/5 studies found 					
	altered cervical movement sense.					

	 Oculomotor disturbance: 8/9 studies found increased ocular disturbance. Balance: 10/10 studies reported a reduced/altered balance control Small evidence was found between the following sensorimotor assessments in people with chronic WAD. Coordination: 2/2 studies found people with chronic WAD are more susceptible to sensory disturbances, evaluated using bimanual coordination test Other proprioception (i.e., shoulder, laterality): 2/3 studies demonstrated differences in people with chronic 	
	WAD	
Undesirable Effects		
How substantial are the	e undesirable anticipated effects associated with the assess	sment method?
Judgement	Research evidence	Additional considerations
○ Large	No evidence of adverse effects was reported.	Some tests can provoke some symptoms (e.g., dizziness), and
 Moderate 		it is important to inform the person that it might occur.
○ Small		HCP's may select only one or two tests to assess impairment
• Irivial		instead of performing multiple tests on the same day, as
		adverse effects can be accumulative.
o Don't know		
Balance of effects		
Does the balance betwe	een desirable and undesirable effects favour assessing or n	ot assessing these factors?
Judgement	Research evidence	Additional considerations
 Favours not 	Probably favour assessing: Cervical joint position error,	The adverse effect can be accumulated as the number of
assessing	cervical movement sense, oculomotor disturbances and	tests assessed increases.
• Probably favours not	balance.	
assessing	Does not favour either assessing or not assessing:	
 Does not favour 	Coordination test and others proprioceptive tests	
either assessing or		
not assessing		
 Probably favours 		
assessing		
 Favours assessing 		
○ Varies		
○ Don't know		

Resources required						
How large are the resou	urce requirements (costs)?					
Judgement	Research evidence	Additional considerations				
 Large costs Moderate costs Negligible costs and savings Moderate savings Large savings Varies Don't know 	A few studies used laboratory equipment that is not feasible for healthcare professionals (e.g., kinematic analyses). However, most studies reported clinical validate tests that healthcare professionals could use at a negligible cost. (i.e., Smooth disturbance neck torsion test; Tandem walk test)	Most factors can be assessed in clinical settings using lower- cost equipment or clinical test. Cervical joint position error is commonly assessed in clinical practice as a mount, a laser pointer, and a target. Cervical movement sense is commonly assessed in clinical practice a laser pointer following a pattern, fixed with a light headband. The oculomotor disturbance is clinically assessed (i.e., smooth pursuit neck torsion test) using an object that people must follow with their eyes. The test can assist in differentiate dizziness due to WAD from vestibular symptoms. Balance assessments can be performed in a clinical setting, e.g., tandem tasks. Available from Whiplash Navigator https://mywhiplash.com.au/				
Equity What would be the Imp	act on health equity?					
Judgement	Research evidence	Additional considerations				
 Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	Not reported	All tests can be performed using the clinical equivalent at low cost. However, HCP's will require some training and expertise in performing and interpreting tests as some results/symptoms are not frequently seen in all people (e.g., oculomotor impairment).				
Acceptability						
Is the assessment meth	od acceptable to key stakeholders?					
Judgement	Research evidence	Additional considerations				

 No Probably no Probably yes Yes Varies Don't know 	Not reported.	Clinical versions of tests are considered acceptable
Feasibility Is the assessment me	hod feasible to implement?	
Judgement	Research evidence	Additional considerations
• No	Not reported.	The tests are minimally invasive and do not require
Probably no Probably no		specialised equipment. Alled HCPs are more likely to
• Yes		taught in undergraduate programs) and require some
∘ Varies		expertise to interpret as some results/symptoms are not
 Don't know 		frequently seen in all people (e.g., oculomotor – impairment).
		Performing those tests may not be feasible for GP's due to
		time limitations.

A.2.8. Conclusions (sensorimotor in chronic WAD)

VOTE 1: Assessment of cervical joint position error, cervical movement sense, oculomotor disturbance and balance in people with chronic WAD

Are you for or against healthcare professionals assessing the following sensorimotor factors in people with chronic WAD: cervical joint position error, cervical movement sense, oculomotor disturbance, balance?

Type of recommendation (cervical joint position error, cervical movement sense, oculomotor disturbance, balance in people with chronic WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
0	0	0	•	0

Recommendations

There was guideline panel consensus to suggest that healthcare professionals assess the following: cervical joint position error, cervical movement sense, oculomotor disturbance and balance in people with chronic WAD.

(Panel vote summary: 11/12 conditional for (92%), 1/12 (8%) neutral)

Justification

- Moderate evidence showing that people with chronic WAD have impairments in cervical joint position error, cervical movement sense, oculomotor disturbance and balance.
- Findings are consistent with previous guidelines.
- All factors can be clinically assessed.
- Results of tests can be used to reassess effectiveness of treatment.

Subgroups considerations

n/a Implementation considerations

Indications:

• Whilst many people with chronic WAD may demonstrate impairment, primary HCPs should consider individual presentation (e.g., people with dizziness).

Considerations:

- Consider these and other tests to differentiate other sources of symptoms (e.g., due to mild traumatic brain injury/ concussion or vestibular causes)
- Be aware that some of the tests can provoke or increase symptoms. Avoid performing multiple tests on the same day to avoid symptom accumulation. Prioritise test based on clinical presentation.

How to assess:

- Training is required to performing and interpret tests. It is important to understand normative values and values that indicate impairment (e.g., error of > 4.5 degrees indicates impairment for cervical joint position error test)
- Resources on how to perform, normative values and threshold for cervical joint position error, cervical movement sense (CMS), smooth pursuit neck torsion test (SPNT), Balance tandem step test) assessments are freely available from Whiplash Navigator https://www.mywhiplash.com.au/content/higher-risk-assessments#sensorimotor-assessment

What to do:

- If people are impaired primary HCPs are recommended to rehabilitate the impairment and may be directed to recommended treatments (e.g., dizziness specific exercise see guideline treatment section)
- Referral to whiplash expert +/- psychological (consideration differential diagnoses).

VOTE 2: Assessment of coordination and other proprioception in people with chronic WAD

Are you for or against healthcare professionals assessing the following sensorimotor factors in people with chronic WAD coordination and proprioception (others)?

Type of recommendation (coordination and other proprioception in people with chronic WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong recommendation consensus for measuring the factor(s)
0	0	•	0	0

Recommendations

The guideline panel cannot reach consensus for or against assessing the following: coordination and proprioception in people with chronic WAD.

(Panel vote summary: 10/12 neutral (83%), 2/12 conditional (17%) for).

Justification

• Only few studies assessing those factors resulting in small evidence.

Subgroup considerations

• n/a

Implementation considerations

Indications:

• We do not recommend as assessing upper limb coordination or other proprioceptive tests routinely. There may however be individual circumstances when assessment is indicated (e.g., person reporting upper limb incoordination or differences in laterality perception.

Considerations:

• Primary HCPs should be aware that some people with WAD may be hypervigilant, hence assessment of laterality may be contraindicated.

What to do:

• If people are impaired primary HCPs are recommended to rehabilitate the impairment

A.3. Pain Sensitivity

What pain sensitivity clinical assessments assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).

A.3.1. Executive summary

What Pain Sensitivity Factors should healthcare professionals assess in people with acute and chronic whiplash?

Acute whiplash: 5 studies evaluated physical pain sensitivity in people with whiplash compared with controls or other pain conditions. 2 longitudinal studies evaluated pain sensitivity in subgroups of people with WAD. Summary of findings in Table 32

- Pressure hyperalgesia: 4/4 independent cohorts showed lower pressure pain threshold in people with acute WAD.
- Thermal hyperalgesia: 3/3 of independent cohorts showed altered thermal hyperalgesia in people with acute WAD.
- Dynamic pain sensitivity testing: 2/2 independent cohorts reduced conditioned pain modulation (CPM) tolerance in people with acute WAD.
- Other pain sensitivity tests: 2/2 independent cohorts showed a positive sign on the brachial plexus provocation test. The 1/1 study found a lower vibration threshold, and the 1/1 study lower nociceptive flexion reflex (NFR) in people with acute WAD.

Chronic whiplash: 7 studies evaluated physical pain sensitivity in people with whiplash compared with controls or other pain conditions. 5 cross-sectional and two longitudinal studies evaluated pain sensitivity in sub-groups of people with WAD. Summary of findings in Table 34

- Pressure hyperalgesia: 10/11 independent cohorts showed lower pressure pain threshold in people with acute WAD.
- Thermal hyperalgesia: 11/11 independent cohorts showed thermal hyperalgesia in people with chronic WAD.
- Dynamic pain sensitivity testing: 2/4 independent cohorts reduced conditioned pain modulation (CPM) tolerance in people with chronic WAD, and 2/4 showed no differences in people with chronic WAD.
- Quantitative Sensory Testing (vibration): 2/3 independent cohorts showed significant alteration in vibration threshold in people with chronic WAD.
- Brachial plexus provocation test: 3/3 independent cohorts positive for Brachial Plexus Provocation Test in people with WAD.
- Nociceptive flexion reflex (NFR): 1/2 independent cohort showed lower NFR in people with chronic WAD.
- Others (i.e., spinal reflex, photophobia): 4/4 independent cohorts showed a significant difference in people with chronic WAD.

A.3.2. Acute pain sensitivity

Pain sensitivity

Category: Pain sensitivity

Sub-category: Pain sensitivity (pressure hyperalgesia, thermal hyperalgesia, dynamic pain sensitivity test, other pain sensitivity testing - Acute and Subacute WAD studies (n=7))

Table 32: Summary of included studies (acute pain sensitivity)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome(s) assessed	Results	Comments	Significan t
(Fernandez- Perez et al., 2012) Muscle trigger points, pressure pain threshold, and cervical range of motion in patients with high level of disability related to acute whiplash injury	To analyse the differences in the prevalence of trigger points (TrPs) between people with WAD and healthy controls	20 participants with acute WAD II and severe disability (mean NDI, 68.5 ± 8.7) (50% female).	20 age-and- gender matched healthy group. (50% female)	TrP manual compression: Temporalis, masseter, upper trapezius, levator scapulae, sternocleido mastoid, suboccipital, and scalene muscles.	TrPs in WAD was 7.3 ± 2.8. In comparison, healthy controls had 1.7 ± 2.2 latent and no active TrPs (P<.01). In people with acute WADs, the most prevalent sites for active TrPs were the levator scapulae and upper trapezius muscles.	The local and referred pain elicited from active TrPs reproduced neck and shoulder pain patterns in individuals with acute WADs with higher levels of disability	Significant
(Chien et al., 2008a)* Hypoesthesia occurs in acute whiplash irrespective	To investigate the presence of sensory hypoaesthesia in acute WAD	52 people with acute WAD (61% female) High-risk (n=17; NDI >30; sensory hypersensitivity)	31 healthy asymptomatic (80% female)	Quantitative Sensory Testing (thermal: cold, heat; vibration) Brachial Plexus	Both the high-risk and low-risk groups exhibited significant elevation in sensory detection when compared with controls (P<0.05).	Hypoaesthesia as well as hypersensitivity may be present in acute WAD.	Significant

of pain and disability levels and the presence of sensory hypersensitivi ty		Low risk" (n=35; without these signs)		Provocation Test (BPPT)			
(Chien et al., 2010)* The development of sensory hypoesthesia after whiplash injury	To investigate hypoesthesia soon after whiplash injury (within 4 wk) and to 3 and 6 months postinjury and to determine differences in detection thresholds between those with initial features of poor recovery and those without these signs.	52 participants with acute (< 1 month) grade II WAD. (62% female) High-risk (n=17; NDI >30; sensory hypersensitivity) Low risk" (n=35; without these signs)	38 healthy asymptomatic volunteers (73% female)	Quantitative Sensory Testing (thermal: cold, heat; vibration) Brachial Plexus Provocation Test (BPPT)	WAD low and high- risk groups showed hypoesthesia at 1- month postinjury. Vibration and electro cutaneous hypoesthesia persisted only at 3 and 6 months in the high-risk WAD group. Heat detection thresholds continued to be elevated in the high- risk group at 3 and 6 months. Both WAD groups were distressed at 1 month, but this decreased by 3 months in the low- risk group.	Sensory hypoesthesia is a feature of acute WAD but persists only in those at higher risk of poor recovery	
(Kasch et al., 2005) Reduced cold pressor tolerance in non- recovered whiplash patients: a 1-	To compare sensory pain stimuli differences between people with whiplash and ankle injured controls	141 people with acute WAD I-III (<2d) (52% female)	40 people with ankle injuries (53% female)	Conditioned Pain Modulation (CPM) test	People with whiplash who failed to recover at 1 year had less cold pain endurance (p<0.05) and shorter time to peak pain (p<0.01)	Reduced cold pressor tolerance in non- recovered people with whiplash: a 1-year prospective study	Significant

year prospective study							
(Sterling, 2010) Differential development of sensory hypersensitivi ty and a measure of spinal cord hyperexcitabi lity following whiplash injury	To compare the temporal development of sensory hypersensitivit y and NFR responses from soon after injury to either recovery or to transition to chronicity	62 people with acute WAD sub- grouped based on NDI (58% female)	22 asymptomatic volunteers (63% female)	Pressure and thermal (cold) pain thresholds Nociceptive flexion reflex (NFR)	All whiplash groups demonstrated spinal cord hyperexcitability (lowered NFR thresholds) at 3 weeks post-injury. This hyperexcitability persisted in those with moderate/severe symptoms at 6 months but resolved in those who recovered or reported lesser symptoms at 6 months. In contrast generalized sensory hypersensitivity (pressure and cold) was only ever present in those with persistent moderate/ severe symptoms and remained unchanged throughout the study period.	WAD injury induces spinal cord hyperexcitability. Irrespective of initial symptom levels but this persists only in those with ongoing moderate to severe symptoms. In contrast cold hyperalgesia and widespread pressure hyperalgesia are only ever present in those who develop persistent moderate/severe. symptoms.	Significant
(Sterling & Pedler, 2009) A neuropathic	To investigate the presence of a neuropathic pain	85 people with acute WAD recruited from mixed sources. People sub-	N/A	S- LANSS for classification of neuropathic	I hose with a neuropathic component (score >12) showed higher pain/disability,	A predominantly neuropathic pain component is related to a complex presentation of higher pain/disability	Significant

component is common in acute whiplash and associated with a more complex clinical presentation	component in acute whiplash using the Self- reported Leeds Assessment of Neuropathic Signs and Symptoms scale (S- LANSS) and evaluated relationships among S- LANSS responses, pain/disability, sensory characteristics (mechanical, thermal pain thresholds, and Brachial plexus provocation test [BPPT] responses) and psychological distress (General Health Questionnaire- 28 [GHQ-28])	grouped based on S-LANSS scores		pain subgroup (Self- reported Leeds Assessment of Neuropathic Signs and Symptoms' scale) Pressure and thermal (cold) pain thresholds Brachial plexus provocation test (BPPT)	hyperalgesia and sensitivity with the BPPT (all p<0.03). There were no differences for pressure pain thresholds	and sensory hypersensitivity	
Changes in Pain Modulation Occur Soon	conditioned pain modulation (CPM) in acute WAD and investigate	acute WAD (<3mo) 47% female)	controls (77% female)	Pain Modulation	effect was observed in acute WAD (P = 0.012 and P = 0.006), which was significantly lower than controls (P =	observed in acute WAD, suggesting less efficient pain modulation. Suggest that central pain and sensorimotor	Significant

After Whiplash Trauma but are not Related to Altered Perception of Distorted Visual	whether changes in CPM are associated with altered perception of distorted visual feedback.	35 people with chronic WAD (>3mo) (74% female)		0.004 and P = 0.020). No obvious differences in CPM were found between acute and chronic WAD (P = 0.098 and P = 0.041).	processing underlie distinctive mechanisms	
Feedback						

A.3.3. Acute pain sensitivity evidence summary

Table 33: Summary of evidence for included studies in acute pain sensitivity

Sub- category	Studies	Population	Assessment method	Conclusion	Evidence Summary
Pressure hyperalgesia (Independent cohorts n=4)	(Fernandez- Perez et al., 2012)	20 acute WAD and severe disability. 20 controls	TrP manual compression	Increased of active TrPs in neck and shoulder in individuals with acute WADs.	4 - Sig
	(Chien et al., 2008a) (Chien et al., 2010)	52 acute WAD 31 controls 52 acute WAD 38 controls	Quantitative Sensory Testing Pressure pain threshold (PPT)	Both the high-risk and low-risk groups exhibited significant elevation in sensory detection (lower pressure pain threshold) when compared with controls.	
	(Sterling, 2010)	62 acute WAD 22 controls	PPT	PPT were lower in people with moderate/severe symptoms compared with lower risk groups in acute phase.	
		85 acute WAD (29 with neuropathic pain 56 without defined by S- LANSS)	PPT	PPT were lower in people with neuropathic pain versus non-neuropathic pain in acute WAD.	
Thermal hyperalgesia (Independent	(Chien et al., 2008a)	52 acute WAD 31 controls 52 acute WAD 38 controls	Quantitative Sensory Testing (thermal: heat, cold)	Altered cold and heat thresholds in people with WAD compared with controls.	3 - Sig

· · · · · · · · · · · · · · · · · · ·	1 - 1 - 1	r			
cohorts n=3)	(Chien et al., 2010)				
	(Sterling, 2010)	62 acute WAD 22 controls	Cold pain thresholds (CPT)	Cold pain thresholds were higher in people with moderate/severe symptoms compared with lower risk groups in acute phase.	
	(Sterling & Pedler, 2009)	85 acute WAD (29 with neuropathic pain, 56 without defined by S- LANSS)	СРТ	Cold pain thresholds were higher in people with neuropathic pain versus non-neuropathic pain in acute WAD.	
Dynamic pain sensitivity testing (Independent cohorts n=2)	(Kasch et al., 2005)	142 acute WAD; 40 with ankle injuries	Conditioned Pain Modulation (CPM) test	Reduced CPM tolerance in WAD compared with control (ankle injury).	2 - Sig
	(Daenen et al., 2014)	30 acute WAD 31 controls	Conditioned Pain Modulation test	Reduced CPM was observed in acute WAD compared with controls, suggesting less efficient pain modulation.	
Other pain sensitivity testing (Independent cohorts n=3)	(Chien et al., 2008a) (Chien et al., 2010)	52 acute WAD 31 controls 52 acute WAD 38 controls	Quantitative Sensory Testing (vibration) Brachial Plexus Provocation Test	Vibration threshold lower and positive sign on BPPT in WAD group compared with controls.	2 - Sig (BPPT), 1 - Sig (vibration hyperalgesia) 1 - Sig (NFR)
	(Sterling, 2010)	62 acute WAD 22 controls	Nociceptive flexion reflex (NFR)	The WAD groups showed significantly lower NFR thresholds compared with controls.	
	(Sterling & Pedler, 2009)	85 acute WAD (29 with neuropathic pain, 56 without defined by S- LANSS)	Brachial Plexus Provocation Test	Significant difference in BPPT test in people with acute WAD and neuropathic pain versus people with acute WAD and no neuropathic pain.	

A.3.4. Chronic pain sensitivity

Pain sensitivity

Category: Pain sensitivity

Sub-category: Pain sensitivity (pressure hyperalgesia, thermal hyperalgesia, dynamic pain sensitivity test, Quantitative Sensory

Testing (vibration), Brachial Plexus Provocation Test (BPPT), Nociceptive Flexion Reflex (NFR) other pain sensitivity testing – Chronic WAD studies (n=20))

Table 34: Summary of included studies (chronic pain sensitivity)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Castaldo et al., 2019) Widespread Pressure Pain Hypersensitiv ity, Health History, and Trigger Points in Patients with Chronic Neck Pain: A Preliminary Study	To investigate the association between pressure pain thresholds, trigger points, and health conditions in people with chronic neck pain	34 people with chronic WAD (76% female)	34 people with mechanical neck pain (MNP) (68% female)	Pressure pain thresholds Upper trapezius, extensor carpi radialis longus, and tibialis anterior muscles	No differences between MNP and WAD (P>0.5) in all muscle	There is no difference in PPT for all muscles between WAD and MNP group	NS
(Chien et al., 2008b)* Whiplash (grade II) and cervical radiculopathy share a similar sensory presentation:	To compare chronic whiplash with a cervical neuropathic condition- cervical radiculopathy, using Quantitative	50 participants with chronic grade II WAD.	38 participants with radiculopathy31 controls with age and sex-matched to WAD group	Quantitative Sensory Testing (thermal: cold, heat; vibration Pressure Pain thresholds	WAD and cervical radiculopathy groups demonstrated lower pain thresholds to pressure and cold stimuli at all sites than the controls (P<0.01). There was no difference in	Generalized sensory hypersensitivity and hypoesthesia occur in both chronic whiplash and cervical radiculopathy	Significant

an investigation using quantitative sensory testing	Sensory Testing				detection thresholds between the asymptomatic limbs of the radiculopathy group and the whiplash group (P>0.05), but both these groups showed higher detection thresholds than the controls (Pr0.05)		
(Chien et al., 2009)* Hypoaesthesi a occurs with sensory hypersensitivi ty in chronic whiplash further evidence of a neuropathic condition	To investigate the sensory presentation of chronic WAD	31 participants with chronic grade II WAD (80% female)	31 healthy volunteers	Quantitative Sensory Testing (thermal: cold, heat; vibration Electrocutan eous stimulation Pain threshold	WAD group demonstrated elevated vibration, heat and electrical detection thresholds at most hand sites compared to controls ($p < 0.05$). Electrical detection thresholds in the lower limb were no different from controls ($p = 0.83$). Mechanical and cold pain thresholds were altered in the whiplash group ($p < 0.05$) with no group difference in heat pain thresholds ($p > 0.1$).	Sensory hypoaesthesia and hypersensitivity co- exist in the chronic whiplash condition. These findings may indicate peripheral afferent nerve fibre involvement but could be a further manifestation of disordered central pain processing.	
(Chien & Sterling, 2010) Sensory hypoaesthesi	This study compared the somatosensory phenotype of whiplash and	50 participants with chronic grade II WAD (78% female)	28 participants with idiopathic neck pain (71% female)	Quantitative Sensory Testing (thermal: cold, heat; vibration)	WAD group demonstrated lowered pressure pain thresholds (PPTs) at all sites compared to the	PPT is lower in WAD than in control, but no differences between pain groups. WAD has a lower cold pain threshold, detection	Significant

a is a feature of chronic whiplash but not chronic idiopathic neck pain	idiopathic neck pain.		31 healthy volunteers (81% female)	Pressure pain threshold	controls (p < 0.01) but there was no difference between the two neck pain groups (p > 0.05) except at the tibialis anterior site (p = 0.02). The whiplash group demonstrated lowered cold pain thresholds compared to idiopathic and control groups (p < 0.03). For detection thresholds, the whiplash group showed elevated vibration (p < 0.04), heat (p < 0.02) and electrical (p < 0.04) thresholds at all upper limb sites compared to the idiopathic neck pain group and the controls (p < 0.04).	threshold, elevated vibration, heat and electrical than INP and control. Sensory hypoesthesia whilst present in chronic WAD is not a feature of chronic idiopathic neck pain.	
(Coppieters et al., 2015) Cognitive performance is related to central sensitization and health- related quality of life in patients	Examining the presence of cognitive impairment, CS, and limitations on health related QoL in people with chronic WAD and FM compared to	16 people with chronic WAD (>3mo) (81% female)	21 people with fibromyalgia (FM) (76% female) 22 healthy controls (64% female)	Pressure pain thresholds Temporal summation [TS], and conditioned pain modulation [CPM]).	PPTs at the shoulder and finger were significantly lower in FM people compared to chronic WAD people and controls. TS was significantly higher in both patient groups in comparison with healthy controls, but no difference	TS higher in both pain groups than control. However, FM showed lower PPT than WAD and no differences in CPM for all 3 groups.	Significant

with chronic whiplash- associated disorders and fibromyalgia	healthy controls.				between WAD and FM No significant differences for the efficacy of endogenous pain inhibition (CPM) in all 3 groups		
(Coppieters et al., 2016) Differences Between Women With Traumatic and Idiopathic Chronic Neck Pain and Women Without Neck Pain: Interrelations hips Among Disability, Cognitive Deficits, and Central Sensitization	To examine differences in disability, cognitive deficits, and central sensitization between women with traumatic and idiopathic (nontraumatic) chronic neck pain and women who were healthy	32 people with chronic WAD (> 3mon) (100% female)	28 healthy controls (100% female) 35 chronic idiopathic neck pain (CINP) (> 3mon) (100% female)	Pressure pain thresholds and Conditioned pain modulation (CPM using cold pressor test)	Decreased PPTs were demonstrated at the middle trapezius muscle, quadriceps muscle, hand, and lumbar region in participants with CWAD but only at the middle trapezius muscle in participants with CINP, relative to the results for women who were healthy (P<.017). No significant differences between participants with CWAD and participants with CINP were found for PPTs at the 4 locations. were significantly lower in participants with CWAD than in women who were healthy and participants with CINP	Local hyperalgesia was demonstrated in participants with CWAD and CINP but not in women who were healthy. However, distant hyperalgesia and decreased CPM efficacy were shown only in participants with WAD.	Significant

					(P<.017).		
(Banic et al., 2004) Evidence for spinal cord hypersensitivi ty in chronic pain after whiplash injury and in fibromyalgia	To investigate spinal cord hypersensitivit y in people with chronic WAD vs people with fibromyalgia and healthy controls	27 people with whiplash (<6mo duration) (70% female)	22 people with fibromyalgia (82% female) 29 healthy controls (69% female)	Spinal reflex Transcutane ous electrical stimulation of the sural nerve	Reflex thresholds were significantly lower in the whiplash compared with the control group, after both single P= 0.024 and repeated P=0.035 stimulation	Spinal cord hypersensitivity demonstrated in chronic WAD and fibromyalgia compared to healthy controls.	Significant
(Haggman- Henrikson et al., 2013) Altered thermal sensitivity in facial skin in chronic whiplash- associated disorders	To investigate facial thermal thresholds in people with chronic WAD with both a qualitative method and quantitative sensory testing (QST)	10 people with chronic WAD (>6mo) (100% female)	10 healthy controls (100% female)	Quantitative Sensory Testing (thermal: cold, heat)	In WAD QST systematically showed significantly higher detection thresholds (i.e., decreased sensitivity) for both cold and warm stimuli than healthy group.	WAD presented higher detection thresholds for both cold and warm stimuli	Significant
(Lemming et al., 2012) Widespread pain hypersensitivi ty and facilitated temporal summation of deep tissue pain in whiplash associated disorder: an	Widespread deep tissue pain hyperalgesia was evaluated in women with chronic whiplash associated disorder (n = 25) and controls (n = 10) using computerized cuff pressure	25 people with chronic WAD (>6mo) (100% female)	10 healthy controls (100% female)	Computerize d cuff pressure algometry and hypertonic saline infusion. Leg with constant cuff pressure stimulation	Cuff pressure pain thresholds were lower in subjects with WAD compared with controls (p < 0. 05). Tonic pressure stimulation evoked higher maximal VAS and larger areas under the VAS curve in subjects WAD compared with controls (p < 0. 05).	Indicated widespread hyperalgesia in chronic whiplash associated disorder and facilitated temporal summation outside the primary pain area, suggesting involvement of central sensitization.	Significant

explorative study of women	algometry and hypertonic saline infusion.			Hypertonic saline was infused in the tibialis anterior muscle			
(Moog M, 2002) The late whiplash syndrome: a psychophysic al study	To examine psychophysica l responses to non-noxious stimuli and their relationship to psychological profiles in people with chronic WAD and matched controls	43 people with chronic WAD (>6mo) (65% female)	43 healthy matched controls (65% female)	Quantitative Sensory Testing (thermal: cold, heat; vibration)	28 people with WAD reported vibration induced pain vs no controls (p value not reported). A significantly higher proportion of people with WAD reported cold induced pain (p<0.0004) but not heat induced pain when compared to controls. No differences in vibration perception threshold between WAD and control.	Chronic whiplash sufferers have an increased pain response to non- noxious stimulation of healthy tissue implicating a central mechanism of pain sensitisation.	Significant
(Ng et al., 2014) Less efficacious conditioned pain modulation and sensory hypersensitivi ty in chronic whiplash- associated disorders in Singapore	Investigating neck motion and pain sensitivity in people with chronic WAD in Singapore	30 people with chronic WAD (>13mo) (47% female)	30 healthy and pain free controls (47% female)	Brachial Plexus Provocation Test (BPPT) Quantitative Sensory Testing (thermal: cold, heat; vibration) Conditioned pain modulation (CPM)	Pain thresholds of blunt pressure, BPPT, and cold were significantly lower in participants with WAD. Cold pressor pain tolerance was significantly lower in participants with WAD. A less efficacious CPM was also demonstrated in participants with WAD.	These findings of sensory hypersensitivity in Singaporeans with chronic WAD	Significant

(Scott et al., 2005) Widespread sensory hypersensitivi ty is a feature of chronic whiplash associated disorder but not chronic idiopathic neck pain	To investigate sensory changes in people with chronic WAD vs people with chronic idiopathic neck pain	29 people with chronic WAD (>3mo) (57% female)	20 people with idiopathic neck pain (INP) (85% women) 20 pain-free people (60% female)	Pressure pain thresholds (PPTs) Quantitative Sensory Testing (thermal: cold, heat)	Pressure pain thresholds were decreased in both subject groups when compared to controls (p<0.05). In the WAD group PTT were also decreased at peripheral sites (p<0.001). Thermal thresholds (hot and cold) were altered in the WAD group (p<0.03) than INP and control.	Both chronic WAD and INP demonstrated mechanical hyperalgesia. Chronic WAD additionally demonstrated widespread hypersensitivity indicating a potential central mechanism of pain processing.	Significant
(Sterling et al., 2008) Psychologic factors are related to some sensory pain thresholds but not nociceptic flexion reflex threshold in chronic whiplash	To investigate relationships between psychologic factors (distress and catastrophisati on) and pain threshold responses to sensory stimuli and spinal cord excitability as assessed by the NFR responses.	30 participants with WAD II-III (77% female)	30 healthy asymptomatic (80% female)	Nociceptive flexion reflex (NFR) Pressure pain thresholds Thermal (heat and cold)	Whiplash injured participants demonstrated lowered pain thresholds to pressure and cold (P<0.05); lowered NFR thresholds (P=0.003), comparable with other musculoskeletal conditions. There were no group differences for heat pain thresholds or pain at NFR threshold.	Decreased pain thresholds present in WAD group compared to control	Significant
(Michele et al., 2002) Pressure pain thresholds in chronic	To investigate pressure pain thresholds (PPT) in people with chronic WAD vs	115 people with chronic WAD (>3mo) (78% female)	95 healthy controls (53% female)	Pressure pain thresholds	People with chronic WAD had significantly lower PPTs than controls in both local and	Results suggest a sensitised central nervous system in people with chronic WAD	Significant

whiplash associated disorder: further evidence of altered central pain processing	healthy controls				remote sites (all p<0.001)		
(Sterling et al., 2002) Responses to a clinical test of mechanical provocation of nerve tissue in WAD	To investigate responses to the brachial plexus provocation test (BPTT) in people with chronic WAD compared to controls	156 people with chronic WAD (>3mo) (81% female)	95 asymptomatic subjects (53% female)	Brachial plexus provocation test (BPPT)	WAD demonstrated that there was a significant difference between the pain reported (VAS) by the WAD group compared to the control group during BPPT	Generalised sensory hypersensitivity demonstrated in chronic WAD subjects	Significant
(Wallin & Raak, 2008) Quality of life in subgroups of individuals with whiplash- associated disorders	(1) to evaluate thermal pain thresholds and health related quality of life in people with WAD compared to healthy pain- free individuals, (2) to explore whether subgrouping of the people with WAD is possible according to thermal pain thresholds	26 participants with WAD (85 % female)	18 control subjects (95% female)	Quantitative Sensory Testing (thermal: cold, heat)	People with WAD are more sensitive to thermal (CPT and HTP) pain when compared with healthy pain-free individuals. Compared with healthy subjects, subgroup 1 (insensitive) shows significant difference concerning warm detection threshold WDT (p = 0.021) and a non-significant trend concerning cold detection threshold CDT (p =	Thermal pain hyperalgesia, especially for cold, seems to be a determinant for subgrouping people with WAD	Significant

						-	
	over trapezius, and if so (3) to explore differences between the subgroups				0.060) over the thenar eminence, whereas subgroup 2 (sensitive) differs significantly concerning CPT over the thenar eminence and all threshold measurements over the trapezius muscle		
(Wallin et al., 2012) Thermal detection and pain thresholds but not pressure pain thresholds are correlated with psychologica l factors in women with chronic whiplash- associated pain	To explorative study of chronic WAD and healthy pain-free controls (CON) (2) Detection and pain thresholds of thermal stimuli and Pressure within, near, and remote to the primary pain area (neck and shoulders),	28 people with chronic WAD (100% female)	29 healthy controls (100% female)	Pressure pain threshold (PPT) Thermal (cold and hot)	WAD showed generalized decreased PPT and CPT, altered HPT and cold detection thresholds in the upper part of the body than control	Indicate the need to consider that a blend of factors influences the pain thresholds in chronic WAD.	Significant
(Watson & Drummond, 2016) The Role of the Trigemino	To investigate signs of central sensitization in a cohort of people with chronic	22 people with chronic whiplash associated headache (91% female)	25 participants that were either headache-free or experienced mild non-	Photophobia Sensory Hyperalgesia Trigeminal Nociception	People in the whiplash group reported significantly greater light-induced pain than controls. The people with CWAH	Suggest mechanical hypersensitivity and photophobia in people with CWAH.	Significant

Cervical Complex in Chronic Whiplash Associated Headache: A Cross Sectional Study	whiplash associated headache (CWAH)		migrainous headache		reported significantly lower PPT at all sites.		
(Sterling, Jull, Vicenzino, & Kenardy, 2003) Sensory hypersensitivi ty occurs soon after whiplash injury and is associated with poor recovery	To determine if sensory hypersensitivit y differed between people with acute WAD and asymptomatic controls	76 people with at 6 months whiplash (70% female)	20 asymptomatic volunteers (60% female)	Pressure pain thresholds (PPTs) Thermal (cold and heat) pain thresholds Brachial plexus provocation test (BPPT)	People with WAD with persistent moderate or severe symptoms demonstrated hypersensitivity to sensory tests (pressure and thermal pain thresholds and brachial plexus provocation test) compared to asymptomatic controls (all p<0.01).	Suggestive of centralised pain control mechanism for those with persistent moderate and severe symptoms.	Significant

(Lenoir et al., 2022)	To investigate the differences in QST	72 with chronic acute WAD (70.8% female)	55 pain-free controls (75.9% female)	Quantitative Sensory Testing	EPTs left (P=0.011) and right wrist (P= 0.023) were lower in	QST outcomes between individuals with CWAD and PFCs, differences	Significant
Are Reports	between			(QST) with	the CWAD group,	between both	
Disability.	CWAD and			Detection	modulation and TS	identified in the pain	
Quality of	pain-free			Thresholds	did not differ	thresholds measured at	
Life,	controls			(EDT) and	between groups.	the left and right wrist,	
I Factors, and				Pain		which were characterised by lower	
Central				Thresholds		pain thresholds in the	
Sensitization				(EPT)		CWAD group.	
Outcomes of				Temporal			
Quantitative				Summation			
Sensory				(TS)			
Lesting in Patients				Paradigm			
Suffering				Conditioned			
from Chronic				Pain			
Whiplash				Modulation			
Disorders?							

(Borsbo et al., 2012) – Subgroups based on thermal and pressure pain thresholds in women with chronic whiplash display differences in clinical presentation - an explorative study excluded – cluster analysis.

A.3.5. Chronic pain sensitivity evidence summary

Table 35: Summary of evidence for included studies in chronic pain sensitivity

Sub- category	Studies	Population	Assessment method	Conclusion	Evidence Summary
Pressure hyperalgesia	(Castaldo et al., 2019)	34 WAD 34 mechanical neck pain (MNP)	Pressure pain threshold (PPT)	There is no difference in PPT for all muscles between WAD and MNP groups.	10 - Sig 1 - NS
Independent cohorts (n =11)					

(Chien et al., 2008b)* (Chien et al., 2009)*	50 WAD 38 with radiculopathy; 31 controls 31 WAD 31 controls	PPT	WAD and cervical radiculopathy groups demonstrated lower pain thresholds to pressure than the controls.	
(Chien & Sterling, 2010)	50 WAD 28 with idiopathic neck pain (INP) 31 controls	PPT	WAD demonstrated lowered pressure pain thresholds (PPTs) at all sites compared to the controls, but there was no difference between the two neck pain groups.	
(Coppieters et al., 2016)	32 WAD 35 with idiopathic neck pain (INP) 28 controls	PPT	Decreased PPTs in WAD than controls.	
(Lemming et al., 2012)	25 WAD 10 controls	Cuff pressure pain threshold	Cuff pressure pain thresholds were lower in subjects with WAD than controls.	
(Scott et al., 2005)	29 WAD 20 INP 20 controls	PPT	Pressure pain thresholds were decreased in both subject groups when compared to controls.	
(Sterling et al., 2008)	30 WAD 30 controls	PPT	Whiplash injured participants demonstrated lowered pain thresholds for pressure.	
(Michele et al., 2002)	115 WAD 95 controls	PPT	People with chronic WAD had significantly lower PPTs than controls in both local and remote sites.	
(Wallin et al., 2012)	28WAD 29 controls	РРТ	WAD showed generalized decreased PPT in the upper part of the body than the control	
(Sterling, Jull, Vicenzino, & Kenardy, 2003)	76 WAD 20 controls	PPT	People with WAD with persistent moderate or severe symptoms demonstrated hypersensitivity to sensory tests (pain pressure) than control	

	(Sterling, 2010)	62 acute WAD 22 controls	Nociceptive flexion reflex (NFR)	The WAD groups showed significantly lower NFR thresholds compared with controls.	
Thermal hyperalgesia (Independent cohorts n =10)	(Sterling & Pedler, 2009)	85 acute WAD (29 with neuropathic pain, 56 without defined by S- LANSS)	Brachial Plexus Provocation Test	Significant difference in BPPT test in people with acute WAD and neuropathic pain versus people with acute WAD and no neuropathic pain.	
	(Chien & Sterling, 2010)	50 WAD 28 with idiopathic neck pain (INP) 31 controls	Cold pain thresholds (CPT) and Heat pain thresholds (HPT)	The whiplash group demonstrated lowered cold pain thresholds compared to the idiopathic and control groups. For detection thresholds, the whiplash group showed elevated heat threshold compared to the idiopathic neck pain group and the controls	
	(Haggman- Henrikson et al., 2013)	10 WAD 10 controls	CPT and HPT	In WAD QST systematically showed significantly higher detection thresholds (i.e., decreased sensitivity) for both cold and warm stimuli than the healthy group.	
	(Ng et al., 2014)	30 WAD 30 controls	СРТ	Col pain thresholds cold were significantly lower in participants with WAD.	
	(Scott et al., 2005)	29 WAD 20 INP 20 controls	CPT	Thermal thresholds (hot and cold) were altered in the WAD group than INP and control.	
	(Sterling et al., 2008)	30 WAD 30 controls	СРТ	Whiplash injured participants demonstrated lowered pain thresholds for cold.	
	(Wallin & Raak, 2008)	26 WAD: 18 controls	CPT and HPT	People with WAD are more sensitive to thermal (CPT and HTP) pain when compared with healthy, pain-free individuals.	
	(Wallin et al., 2012)	28WAD: 29 controls	СРТ	WAD showed generalized decreased CPT, altered HPT and cold detection thresholds in the upper part of the body than the control group.	
	(Sterling, Jull, Vicenzino, &	76 WAD 20 controls	CPT	Cold pain thresholds were higher, and PPT were lower in people with moderate/severe symptoms compared to the control group.	

	Kenardy, 2003)				
	Sterling 2010	62 acute WAD 22 controls	СРТ	Cold pain thresholds were higher in people with moderate/severe symptoms compared with lower risk groups in acute phase.	
Dynamic pain sensitivity testing (Independent cohorts n=4)	(Coppieters et al., 2015)	16 WAD; 21 fibromyalgia (FM) 22 controls	Conditioned Pain Modulation (CPM) test	No significant differences for the efficacy of endogenous pain inhibition (CPM) in all 3 groups	2 – NS 2 – Sig
	(Coppieters et al., 2016)	32 WAD 35 with idiopathic neck pain (INP) 28 controls	СРМ	CPM values were Lower in participants with CWAD than in women who were healthy and participants with CINP	
	(Ng et al., 2014)	30 WAD 30 controls	Conditioned pain modulation (CPM)	CPM values were Lower in participants with WAD. A less efficacious CPM was also demonstrated in participants with WAD.	
	(Lenoir et al., 2022)	72 WAD 55 controls	Conditioned pain modulation (CPM)	Conditioned pain modulation did not differ between groups.	
Quantitative Sensory Testing (vibration) (Independent cohorts n =3)	(Chien et al., 2008b)* (Chien et al., 2009)*	50 WAD; 38 with radiculopathy; 31 controls 31 WAD; 31 controls	Quantitative Sensory Testing (vibration)	WAD group demonstrated elevated vibration compared to control	2 -Sig 1- NS
	(Chien & Sterling, 2010)	50 WAD; 28 with idiopathic neck pain (INP); 31 controls	Quantitative Sensory Testing (vibration)	WAD group demonstrated elevated vibration compared to control	
	(Moog M, 2002)	43 WAD; 43 controls	Quantitative Sensory Testing (vibration)	No differences in vibration perception threshold between WAD and control	
---	---	---	--	--	-------------------
Brachial Plexus Provocation Test (BPPT) (Independent cohorts n =3)	(Ng et al., 2014)	30 WAD; 30 controls	Brachial Plexus Provocation Test (BPPT)	Higher pain in WAD group compared to the control group during BPPT	3 – Sig
	(Sterling et al., 2002)	156 WAD; 95 controls	Brachial plexus provocation test (BPPT)	Higher pain in WAD group compared to the control group during BPPT	
	(Sterling, Jull, Vicenzino, & Kenardy, 2003)	76 WAD 20 controls	Brachial plexus provocation test (BPPT)	Group with mild symptoms improved over time and showed no difference from control by 2 months. Group with moderate/severe symptoms showed no change over time and continued to demonstrate less elbow extension and higher Vas scores than controls at 6 months post- injury.	
Nociceptive Flexion Reflex (NFR) (Independent cohorts n =2)	(Sterling et al., 2008)	30 WAD; 30 controls	Nociceptive flexion reflex (NFR)	There were no group differences at NFR threshold	1 - Sig 1 - NS
	(Sterling, 2010)	62 acute WAD;22 controls	Nociceptive flexion reflex (NFR)	The WAD groups showed significantly lower NFR thresholds compared with controls.	
Others (Independent cohorts n =4)	(Banic et al., 2004)	27WAD; 22 fibromyalgia (FM); 29 controls	Spinal reflex Transcutaneous electrical stimulation of the sural nerve	Reflex thresholds were significantly lower in the whiplash compared with the control group	4 - Sig

(Lemming et al., 2012)	25 WAD; 10 controls	Hypertonic saline was infused in the tibialis anterior muscle	Tonic pressure stimulation evoked higher maximal VAS and larger areas under the VAS curve in subjects WAD compared with controls	
(Watson & Drummond, 2016)	22 WAD with headache; 26 controls headache free	Photophobia	People in the whiplash group reported significantly greater light-induced pain than controls.	
(Lenoir et al., 2022)	72 WAD; 55 controls	Electrical Detection Thresholds (EDT) and Electrical Pain Thresholds (EPT)	EPTs left (P=0.011) and right wrist (P= 0.023) were lower in the CWAD	

*Same cohort in the sub-category

Table 36: Evidence to decision framework (pain sensitivity in acute WAD)

Strength of association		
How substantial are the	e assessed outcome differences between people with WAD	and control populations?
Judgement	Research evidence	Additional considerations
○ Trivial	Thermal hyperalgesia (cold, heat), pressure	Findings for cold hyperalgesia were consistent with the
∘ Small	hyperalgesia, Conditioned Pain Modulation, and other	prognosis section of these guidelines, where assessment of
 Moderate 	pain sensitivity assessments (BPPT, vibration	cold hyperalgesia was also recommended to assess for
∘ Large	hyperalgesia, NFR) were significantly different between	determining those at risk of poor prognosis.
○ Varies	WAD and controls, and/or between moderate-to-severe	Findings across the acute WAD studies are consistent with
○ Don't know	 subgroups of people with WAD compared with lower risk WAD subgroups. These findings were consistent across all studies. Pressure hyperalgesia: 4/4 independent studies showed lower pressure pain threshold in people with acute WAD. Thermal hyperalgesia: 3/3 independent studies showed alteration in thermal hyperalgesia in people with acute WAD. Dynamic pain sensitivity testing: 2/2 independent studies reduced conditioned pain 	systematic reviews and suggest the presence of altered pain sensitivity in medium-high risk subgroups of people with acute WAD.
	modulation (CPM) tolerance in people acute WAD.	

	• Other pain sensitivity test: 2/2 independent studies showing positive sign on brachial plexus provocation test, 1/1 study found lower vibration threshold and 1/1 study lower nociceptive flexion reflex (NFR) in people with acute WAD.	
Undesirable Effects		
How substantial are the	undesirable anticipated effects associated with the assess	sment method?
Judgement	Research evidence	Additional considerations
 Large Moderate Small Trivial Varies Don't know 	Not reported.	Pain sensitivity testing can temporarily cause or increase acute pain, it is important for healthcare professionals to inform the person this may occur.
Balance of effects Does the balance betwe	en desirable and undesirable effects favour assessing or n	ot assessing these factors?
Judgement	Research evidence	Additional considerations
 Favours not assessing Probably favours not assessing Does not favour either assessing or not assessing Probably favours assessing Favours assessing Varies Don't know 	Consistent findings were found across the included studies that suggest the presence of altered pain sensitivity in moderate-severe risk subgroups of people with acute WAD. Adverse effects are likely trivial in magnitude.	If HCPs know that a person is pain sensitive from these clinical tests, the findings can guide treatment direction (see recommendations for moderate-severe risk subgroups). The assessment should only be performed if it can be reasonably completed in the clinical setting and the persons clinical presentation indicates the need for assessment.
Resources required	irce requirements (costs)?	
Judgement	Research evidence	Additional considerations
 Large costs Moderate costs Negligible costs and savings 	Not reported.	Some tests require specialised equipment and are associated with higher costs. However, there are valid alternatives to assessing pain sensitivity that do not require specialised equipment and are relatively lower in cost. For

 Moderate savings Large savings Varies Don't know 		example, descriptions on how to clinically assess cold hyperalgesia using ice is freely available on Whiplash Navigator <u>https://mywhiplash.com.au/</u> PPT can be assessed using a pressure algometer. Conditioned pain modulation (CPM) testing in the included studies utilises laboratory equipment (e.g., circulating ice bath). However, CPM testing be performed using a clinical alternative with a pressure cuff. NFR test is considered to be moderate in cost as it requires a High Voltage Constant Current Stimulator and EMG. Assessment of vibration hyperalgesia is considered to be moderate in cost as it requires a specialised vibrometer device.
Equity What would be the Imp	act on health equity?	
Judgement Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	Research evidence	Additional considerations Primary HCPs can easily administer clinical versions of pain sensitivity assessments as part of routine consultation and with no additional costs. However, HCP training may be required to carry out the tests effectively.
Acceptability Is the assessment meth	od acceptable to key stakeholders?	
Judgement No Probably no Probably yes Yes Varies Don't know 	Research evidence Not reported.	Additional considerations Some people may have a temporary increase in pain as a result of the assessment. However, healthcare professionals could use the assessments as education to explain how the test informs understanding of pain and in turn appropriate treatment. This is understood to improve acceptance by the person. Consumers on the guideline panel find the recommended assessment acceptable.
Feasibility Is the assessment meth	od feasible to implement?	
Judgement	Research evidence	Additional considerations

• No	Not reported.	There are clinical alternatives to assessing pain sensitivity
 Probably no 		that do not require specialised equipment. E.g., descriptions
 Probably ves 		and videos on how to perform a clinical version of cold
o Yes		hyperalgesia using ice is freely available from Whiplash
• Varies		Navigator https://mywhiplash.com.au/
o Don't know		HCP training may be required to carry out the tests
		effectively
		At present, the CPM clinical test is not outlined on Whinlash
		Navigator but is available via a handout presented on
		http://www.specialistphysicaducation.pet.au (Pobback at al
		"How to access for pain consistention in the clinic pack and
		How to assess for pair sensitisation in the curric. neck and
		arm pain focus). There may be scope to include guidelines
		for performing CPM assessment on Whiplash Navigator.
		NFR test may not be as feasible in clinical settings as it
		requires a High Voltage Constant Current Stimulator and
		EMG.
		Assessment of vibration hyperalgesia may not be feasible in
		clinical settings as it requires a specialised vibrometer
		device.

A.3.6. Conclusions (pain sensitivity in acute WAD)

VOTE 1: Assessment thermal hyperalgesia, pressure hyperalgesia, dynamic pain sensitivity, brachial plexus provocation test in people with acute WAD

Are you for or against healthcare professionals assessing the following: pain sensitivity tests in people with acute whiplash: thermal hyperalgesia, pressure hyperalgesia, dynamic pain sensitivity, brachial plexus provocation test?

Type of recommendation (thermal hyperalgesia, pressure hyperalgesia, dynamic pain sensitivity, brachial plexus provocation test in people with acute WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
0	0	0	•	0

Recommendations

There was guideline panel consensus to suggest that Healthcare professionals assess the following test(s): thermal hyperalgesia (CPT, heat), pressure hyperalgesia (PPT), dynamic pain sensitivity testing (CPM), and Brachial Plexus Provocation Test (BPPT).

(Panel vote summary: 11/12 (92%), conditional for 1/12 (8%) neutral)

Justification

- Consistent findings were found across the included studies that suggest the presence of altered pain sensitivity in moderate-severe risk subgroups of people with acute WAD.
- Adverse effects for assessing pain sensitivity using these methods are likely trivial in magnitude.
- Findings for cold hyperalgesia were consistent with the prognosis section of these guidelines, where assessment of cold hyperalgesia was recommended for determining those at risk of poor prognosis (see prognosis section for pain sensitivity).
- Primary HCP's can administer clinical versions of pain sensitivity tests and conduct them as part of a routine consultation. These clinical tests are relatively low cost to administer.

Subgroups considerations

• Pain sensitivity assessments should be performed only for people at medium-to-high risk of poor recovery.

Implementation considerations

Indications:

• For people stratified as med/ high risk of poor outcome and / or when clinically indicated (e.g., widespread pain, reports of pain with nonnoxious stimuli).

How to assess:

- Cold hyperalgesia¹: Ice Pain Test (Rebbeck et al., 2015). Perform with ice and ask a NRS rating for pain. NRS>5/10 for pain considered cold hyperalgesia (Maxwell & Sterling, 2013).
- Pressure hyperalgesia¹: Best performed using a pressure algometer.

- Brachial Plexus Provocation Test (BPPT)¹ is a clinical test to assess neural tissue sensitivity. The test can be modified to not go to end of range (i.e., avoid excessive overpressure).
- Conditioned Pain Modulation (CPM): refer to the description of the test in the handout (Rebbeck et al. "How to assess for pain sensitisation in the clinic: neck and arm pain focus") presented on the following website http://www.specialistphysioeducation.net.au.

Considerations:

• Healthcare professionals should be cautious about carrying out a provocative pain sensitivity testing in people who present with widespread pain as some people may have a temporary increase in pain as a result of the assessment.

Contraindications:

• Cervical radiculopathy contraindicates provocative tests (upper limb neural tension test – brachial plexus).

What to do if test positive:

- Educate person on the purpose of the assessment and if positive on the assessment, take the opportunity to educate the person about pain hypersensitivity.
- Use results to guide treatment for example if positive some treatments may be contra-indicated (e.g., manual therapy), whilst others may be required (e.g., medication review / stronger medications refer to pharmacological recommendations).
- Referral to whiplash specialist for management.
- Consider psychologically informed exercise interventions (see treatment recommendation).
- Online resources¹ are available for healthcare professionals to become familiar with how to do this, however some may require training to effectively implement and interpret the findings from these tests.

¹More details on how to perform these tests are on MyWhiplashNavigator .

https://www.mywhiplash.com.au/content/higher-risk-assessments#pain-sensitivity

VOTE 2: Assessment vibration hyperalgesia, nociceptive flexion reflex in people with acute WAD

Are you for or against healthcare professionals assessing the following pain sensitivity tests in people with acute whiplash: vibration hyperalgesia, nociceptive flexion reflex?

Type of recommendation (vibration hyperalgesia, nociceptive flexion reflex in people with acute WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
0	•	0	0	0

Recommendation

There was guideline panel consensus to suggest that healthcare professionals do not assess the following test(s): vibration hyperalgesia (vibrometer), Nociceptive Flexion Reflex (NFR) in people with acute WAD.

(Panel vote summary: 9/12 (75%) conditionals against; 1/12(5%) strong against; 1/12 neutral (5%); 1/12 (5%) conditional for)

Justification

- Vibration and NFR thresholds were shown to be lower in WAD groups compared with controls, however, these findings were from single studies.
- NFR test is not feasible in clinical settings as it requires a High Voltage Constant Current Stimulator and EMG, and specialised training to administer.
- Assessment of vibration hyperalgesia may not be feasible in clinical settings as it requires a specialised vibrometer device.

Subgroups considerations

n/a Implementation considerations n/a Table 37: Evidence to decision framework (pain sensitivity chronic WAD)

Strength of association		
How substantial are the	e assessed outcome differences between people with WAD	and control populations?
Judgement	Research evidence	Additional considerations
 Trivial Small Moderate Large Varies Don't know 	 Strong evidence for pressure and thermal hyperalgesia, where people with WAD were significantly different from control group: Pressure hyperalgesia: 10/11 independent studies showed lower pressure pain threshold in people with acute WAD. Thermal hyperalgesia: 11/11 independent studies showed thermal hyperalgesia in people with chronic WAD. Moderate evidence for differences between groups for BPPT Brachial plexus provocation test: 3/3 studies positive for Brachial Plexus Provocation Test in people with WAD. Dynamic pain sensitivity testing: 2/4 independent studies reduced conditioned pain modulation (CPM) tolerance in people acute WAD. Vibration: 2/3 studies demonstrated elevated vibration compared to control group. 	Findings across the chronic WAD studies were consistent with systematic reviews and suggest the presence of altered pain sensitivity in people with chronic WAD compared with controls or other pain groups. These findings are greater in people with moderate-severe disability.
Undesirable Effects	undesirable entisingted offects especiated with the second	mont mothod?
	Personable anticipated effects associated with the assess	
 Large Moderate Small Trivial Varies Don't know 	Not reported.	Pain sensitivity testing can temporarily cause or increase chronic pain, it is important for healthcare professionals to inform the person this may occur.
Balance of effects Does the balance betwe	een desirable and undesirable effects favour assessing or n	ot assessing these factors?
Judgement	Research evidence	Additional considerations

 Favours not assessing Probably favours not assessing Does not favour either assessing or not assessing Probably favours assessing Favours assessing Varies Don't know 	Probably favours assessing thermal hyperalgesia (CPT, heat), pressure hyperalgesia (PPT), and Brachial Plexus Provocation Test (BPPT). Does not favour either assessing or not assessing Dynamic pain sensitivity pain Probably favours not assessing vibration hyperalgesia and Nociceptive Flexion Reflex (NFR) (vibrometer) Consistent findings were found across the included studies that suggest the presence of altered pain sensitivity in people with moderate-severe disability Adverse effects are likely trivial in magnitude.	If HCPs know that a person is pain sensitive from these clinical tests, the findings can guide treatment direction (see recommendations for moderate-severe risk subgroups). The assessment should only be performed if it can be reasonably completed in the clinical setting and the person's clinical presentation indicates the need for assessment.
Resources required How large are the resou	ırce requirements (costs)?	
Judgement	Research evidence	Additional considerations
 Large costs Moderate costs Negligible costs and savings Moderate savings Large savings Varies Don't know 	Not reported.	Some tests require specialised equipment and are associated with higher costs. However, there are valid alternatives to assessing pain sensitivity that do not require specialised equipment and are relatively lower in cost. For example, descriptions on how to clinically assess cold hyperalgesia using ice is freely available on Whiplash Navigator <u>https://mywhiplash.com.au/</u> PPT can be assessed using a pressure algometer. CPM testing in the included studies utilises laboratory equipment (e.g., circulating ice bath). However, CPM testing be performed using a clinical alternative with a pressure cuff. NFR test is considered to be moderate in cost as it requires a High Voltage Constant Current Stimulator and EMG. Assessment of vibration hyperalgesia is considered to be moderate in cost as it requires a specialised vibrometer device.
What would be the Impa	act on health equity?	
Judgement	Research evidence	Additional considerations

 Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 		Primary HCP's can easily administer these the clinical versions of the pain sensitivity assessments as part of routine consultation and with no additional costs. However, HCP training may be required to carry out the tests effectively.
Acceptability Is the assessment meth	od acceptable to key stakeholders?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	Not reported.	Some people may have a temporary increase in pain as a result of the assessment. However, healthcare professionals could use the assessments as education to explain how the test informs understanding of pain and in turn appropriate treatment. This is understood to improve acceptance by the person.
Feasibility Is the assessment meth	od feasible to implement?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	Not reported.	There are clinical alternatives to assessing pain sensitivity that do not require specialised equipment. E.g., descriptions and videos on how to perform a clinical version of cold hyperalgesia using ice is freely available from Whiplash Navigator <u>https://mywhiplash.com.au/</u> HCP training may be required to carry out the tests effectively. At present, the CPM clinical test is not outlined on Whiplash Navigator but is available via a handout presented on http://www.specialistphysioeducation.net.au (Rebbeck et al. "How to assess for pain sensitisation in the clinic: neck and arm pain focus"). There may be scope to include guidelines for performing CPM assessment on Whiplash Navigator.

	NFR test may not be as feasible in clinical settings as it requires a High Voltage Constant Current Stimulator and EMG. Assessment of vibration hyperalgesia may not be feasible in clinical settings as it requires a specialised vibrometer device.
--	--

A.3.7. Conclusions (pain sensitivity in chronic WAD)

VOTE 1: Assessment thermal hyperalgesia, pressure hyperalgesia, brachial plexus provocation test in people with chronic WAD

Are you for or against healthcare professionals assessing the following pain sensitivity tests in people with chronic whiplash: thermal hyperalgesia, pressure hyperalgesia, brachial plexus provocation test?

Type of recommendation (hyperalgesia, pressure hyperalgesia, brachial plexus provocation test in people chronic WAD)

Strong consensus	Conditional consensus	Conditional consensus	Conditional consensus	Strong consensus
recommendation for not	recommendation to not	recommendation for either	recommendation for	recommendation for
measuring the factor(s)	measure the factor (s)	measuring the factor (s) or	measuring the factor (s)	measuring the factor(s)
0	0	not o	•	0

Recommendations

There was guideline panel consensus to suggest that Healthcare professionals assess the following test(s): thermal hyperalgesia (CPT, heat), pressure hyperalgesia (PPT), and Brachial Plexus Provocation Test (BPPT) in people with chronic WAD.

(Panel vote summary: 12/12 (100%) conditional for)

Justification

- Consistent findings were found across the included studies that suggest the presence of altered pain sensitivity in people with chronic WAD.
- Adverse effects for assessing pain sensitivity using these methods are likely trivial in magnitude.
- These clinical tests are relatively low cost to administer.

Subgroups considerations

• More severe or likely in those with moderate-severe disability.

Implementation considerations

Indications:

• Pain sensitivity assessment should be performed if clinically indicated (e.g., widespread pain, reports of pain with non-noxious stimuli).

How to assess:

- Cold hyperalgesia¹: Ice Pain Test (Rebbeck et al., 2015). Perform with ice and ask a NRS rating for pain. NRS>5/10 for pain considered cold hyperalgesia (Maxwell & Sterling, 2013).
- Pressure hyperalgesia¹: Best performed using a pressure algometer.
- Brachial Plexus Provocation Test (BPPT)¹ is a clinical test to assess neural tissue sensitivity. The test can be modified to not go to end of range (i.e., avoid excessive overpressure).

Considerations:

• Healthcare professionals should be cautious about carrying out a provocative pain sensitivity testing in people who present with widespread pain as some people may have a temporary increase in pain as a result of the assessment.

Contraindications:

• Cervical radiculopathy contraindicates provocative tests (upper limb neural tension test - brachial plexus).

What to do if test positive:

- Educate person on the purpose of the assessment and if positive on the assessment, take the opportunity to educate the person about pain hypersensitivity.
- Use results to guide treatment for example if positive some treatments may be contra-indicated (e.g., manual therapy), whilst others may be required (e.g. medication review / stronger medications).

• Online resources¹ are available for healthcare professionals to become familiar with how to do this, however some may require training to effectively implement and interpret the findings from these tests.

¹More details on how to perform these tests are on MyWhiplashNavigator

https://www.mywhiplash.com.au/content/higher-risk-assessments#pain-sensitivity

VOTE2: Assessment dynamic pain sensitivity testing (CPM) in people with chronic WAD

Are you for or against healthcare professionals assessing the following pain sensitivity tests in people with chronic whiplash: dynamic pain sensitivity test?

Type of recommendation (dynamic pain sensitivity testing in people with chronic WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong recommendation consensus for measuring the factor(s)
0	0	•	0	0

Recommendations

The guideline panel cannot reach consensus for or against assessing the following test(s): dynamic pain sensitivity testing (CPM) in people with chronic WAD.

(Panel vote summary: 11/12 (92%) neutral, 1 conditional (8%) for)

Justification

- Inconsistent evidence, however, consistent findings were found across the included studies that suggest the presence of altered pain sensitivity in Chronic WAD.
- Adverse effects for assessing pain sensitivity using these methods are likely trivial in magnitude.

Subgroup considerations

• More severe or likely in those with moderate to severe disability.

Implementation considerations

Indications:

• People with widespread pain, especially nociplastic pain type.

How to assess

• Conditioned Pain Modulation (CPM): refer to the description of the test in the handout (Rebbeck et al. "How to assess for pain sensitisation in the clinic: neck and arm pain focus") presented on the following website http://www.specialistphysioeducation.net.au.

Considerations

• Healthcare professionals should be cautious about carrying out a provocative pain sensitivity testing in people who present with widespread pain as some people may have a temporary increase in pain as a result of the assessment.

What to do if test positive:

- Educate person on the purpose of the assessment and if positive on the assessment, take the opportunity to educate the person about pain hypersensitivity.
- Use results to guide treatment for example if positive some treatments may be contra-indicated (e.g., manual therapy), whilst others may be required (e.g., medication review / stronger medications. Treatments recommended for medium/high risk group should be considered (see treatment section).

Online resources¹ are available for primary HCPs to become familiar with how to do this, however some may require training to effectively implement and interpret the findings from these tests.

¹ More details on how to perform these tests are on MyWhiplashNavigator (<u>www.mywhiplash.com.au</u>)

VOTE 3: Assessment vibration hyperalgesia, nociceptive flexion reflex in people with chronic WAD

Are you for or against healthcare professionals assessing the following pain sensitivity tests in people with chronic whiplash: Nociceptive Flexion Reflex (NFR) and vibration hyperalgesia?

Type of recommendation (vibration hyperalgesia, nociceptive flexion reflex in people with chronic WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor(s)	Conditional consensus recommendation for either measuring the factor(s) or not	Conditional consensus recommendation for measuring the factor(s)	Strong consensus recommendation for measuring the factor(s)
0	•	0	0	0

Recommendation

There was guideline panel consensus to suggest that healthcare professionals do not assess the following test(s): Nociceptive Flexion Reflex (NFR) and vibration hyperalgesia in people with chronic WAD.

(Panel vote summary: 11/11 conditional against (100%)

Justification

- Vibration and NFR thresholds were shown to be inconsistent in WAD groups compared with controls, however, these findings were from few studies.
- NFR test is not feasible in clinical settings as it requires a High Voltage Constant Current Stimulator and EMG, and specialised training to administer.
- Assessment of vibration hyperalgesia may not be feasible in clinical settings as it requires a specialised vibrometer device.

A.4. Additional psychological factors

What psychological clinical assessments assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).

A.4.1. Executive summary

What Psychological Factors should healthcare professionals assess in people with acute and chronic whiplash?

Acute whiplash: 2 studies evaluated psychological in people with whiplash compared with controls or other pain conditions. There is 1 inception cohort study evaluated psychological factors in sub-groups of people with WAD. Summary of findings here:

- Fear avoidance: 1/1 study showed that the moderate/severe subgroup presents higher fear avoidance.
- Self-efficacy: 1/1 study showed decreased self-efficacy in people with acute WAD.

Chronic whiplash: 2 studies evaluated psychological in people with whiplash compared with controls or other pain conditions. One inception cohort study evaluated psychological factors in sub-groups of people with WAD. Summary of findings here:

- Mental Disorders: 1/1 study showed people with whiplash had a more significant number of diagnoses of mental disorders and the most common is depression.
- Positive Symptoms Distress: 1/1 study showed whiplash symptoms are similar to other types of trauma.
- Perceived cognitive deficits: 2/2 studies showed people with whiplash report cognitive deficits.

A.4.2. Acute additional psychological factors

Additional psychological factors

Category: additional psychological factors

Sub-category: Psychological factors (fear avoidance and self-efficacy) – Acute WAD studies (n=2)

Table 38: Summary of included studies (acute additional psychological factors)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Pedler &	To examine the	Inception cohort		Fear-	On both measures,	People with	Significant
Sterling,	development	study 98 people		avoidance	the moderate/	moderate/severe	
2011)	of fear	with acute WAD			severe group scored	symptoms showed	

Assessing fear- avoidance beliefs in patients with whiplash- associated disorders: A comparison of 2 measures	avoidance behaviours after a whiplash injury	from mixed sources. People grouped on NDI		Tampa Scale of Kinesio- phobia (TSK- 17) and the Pictoril Fear of Activity Scale (PFActS-C)	significantly higher than the mild and recovered groups. TSK-17 scores, age and initial pain intensity at baseline significantly predicted NDI scores at 6 months (P=0.002).	higher fear avoidance than those with lesser symptoms.	Moderate/ severe> lower symptoms
(Bunketorp- Kall et al., 2007) The impact of subacute whiplash- associated disorders on functional self-efficacy: a cohort study	To analyse whether subacute WAD has an impact on self- efficacy beliefs	47 people with subacute WAD (<6 weeks or >3 months (64% female)	212 age and sex-matched control group	Self-Efficacy Scale (SES)	Both the mean (P<0.001) and median (P<0.001) total scores of the SES were significantly higher in the control group than the WAD group.	People with subacute WAD exhibit a reduction in self- efficacy beliefs compared with control	Significant Decline Self- efficacy WAD> C

A.4.3. Acute additional psychological factors evidence summary

Table 39: Summary of evidence for included studies in acute additional psychological factors

Sub- category	Studies	Population	Measurement	Conclusion	Evidence Summary
Fear- avoidance (Independent cohort n=1)	(Pedler & Sterling, 2011)	98 people with acute WAD and people grouped on NDI	Fear-avoidance Kinesiophobia	People with moderate/severe symptoms showed higher fear avoidance than those with lesser symptoms.	1- Sig

Self-efficacy	(Bunketorp- Kall et al., 2007)	47 sub-acute WAD 212 controls	Self-Efficacy Self-Efficacy Scale (SES)	People with subacute WAD exhibit lower self-efficacy beliefs than the general population.	1- Sig
(independent					
cohort n=1)					

A.4.4. Chronic additional psychological factors

Additional psychological factors

Category: additional psychological factors

Sub-category: Psychological factors (mental disorders, psychological distress and cognitive deficits)– chronic and mixed WAD studies (>3mon) (n=4)

Table 40: Summary of included studies (chronic additional psychological factors)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Kivioja et al., 2004) Psychiatric morbidity in patients with chronic whiplash associated disorder.	Prospective cohort study to compare psychiatric morbidity in people with chronic WAD versus recovered controls	38 people with acute WAD (within 1wk) (47% female)	38 asymptomatic controls (47% female)	Mental Disorders Structured clinical interview for diagnostic and Statistical Manual of Mental Disorders (DSM-IV)	The chronic WAD group had a significantly greater no. of diagnoses on DSM IV Axis 1 compared to controls (22 vs 11, p<0.05). Also, chronic WAD group had greater Axis 1 diagnoses before the accident (13 vs 3, p<0.01). Most common diagnosis was depression.	Psychiatric symptoms pre- and post-injury may be a diagnostic factor for chronic WAD.	Significant Depression WAD> C
(Radanov et al., 2011)	Compared Symptom Checklist 90- Revised (SCL-	156 participants with WAD (82% female)	54 with pain due to other types of traumas (body	Positive Symptom Distress (PSD)	The WP and non-WP groups showed mean T scores in the	WAD symptoms seem to be similar to group with other types of trauma; the only	NS

Are symptoms of late whiplash specific? A comparison of SCL-90-R symptom profiles of patients with late whiplash and patients with chronic pain due to other types of trauma	90-R) symptom profiles of people with late whiplash and people with chronic pain due to other types of traumas		trauma such as a back or head concussion, lower limb fracture) (67% female)	SCL-90-R	pathological range for the dimensions "Somatization," "Obsessive- Compulsive," and PSD. Multivariable revealed headache (OR 1.54; 95% CI 1.16, 2.03; p = 0.003) and lower emotional lability (OR 0.96; 95% CI 0.93, 0.98; p =0.003) were the only significant variables.	difference is a headache.	
(Sullivan et al., 2002) Perceived cognitive deficits, emotional distress and disability following whiplash injury	To describe the pattern of perceived cognitive deficits in people with whiplash injury	29 people with chronic WAD Grade I or II (55% female)	24 work- injured people with soft tissue injuries. (55% women) 28 non-injured controls (55% female)	Perceived cognitive deficit. Perceived Deficits Questionnair e (PDQ)	Both patient groups scored significantly higher than the nonpatient control group on perceived cognitive deficits but did not differ significantly from each other. Anxiety and depression contributed significant unique variance to the prediction of perceived cognitive deficits.	People with WAD report significant cognitive difficulties	Significant Cognitive Deficits WAD >C
(Beeckmans et al., 2017) Persistent cognitive deficits after	To evaluate persistent cognitive deficits in people with whiplash injury	61 people with whiplash injury (64% females)	30 healthy controls (63% females) 57 people	Perceived cognitive deficits. Neuropsycho logical tests	In both patient groups, participants showed persistent cognitive symptoms. The WI group, as compared to the HC	People with whiplash injury might present with persistent cognitive deficits compared to healthy control.	Significant Cognitive Deficits WAD >C

Footnote: (Pedler & Sterling, 2013)- People with chronic whiplash can be sub-grouped on the basis of symptoms of sensory hypersensitivity and posttraumatic stress excluded because investigate cluster groups

A.4.5. Chronic additional psychological factors evidence summary

Table 41: Summary of evidence for included studies in chronic additional psychological factors

Sub-category	Studies	Population	Measurement	Conclusion	Evidence Summary
Mental disorder (depression)	(Kivioja et al., 2004)	38 acute WAD; 38 controls	Statistical Manual of Mental Disorders (DSM-IV)	The chronic WAD group had a significantly greater no. of diagnoses. Most common diagnosis was depression.	1 - Sig
(Independent					

cohort n=1)					
Psychological distress	(Radanov et al., 2011)	156 WAD 54 other traumas	Positive Symptom Distress (PSD) SCL-90-R	WAD symptoms seem to be like another type of trauma; the only difference is a headache.	1 - NS
(Independent cohort n=1)					
Cognitive deficits	(Sullivan et al., 2002)	29 WAD 24 soft tissue injury	Cognitive deficits	Significant perceived cognitive difficulties demonstrated in people with WAD	2 - Sig
cohorts n=2)		28 controts			
	(Beeckmans et al., 2017)	61 WAD 30 MTBI 30 controls	Cognitive deficits	People with whiplash injury might have more persistent cognitive deficits than healthy control.	

Table 42: Evidence to decision framework (additional psychological factors in acute WAD)

Strength of association How substantial are the assessed outcome differences between people with WAD and control populations?						
Judgement	Research evidence	Additional considerations				
 Trivial Small Moderate Large Varies Don't know 	The strength of association for psychological factors is overall inconclusive due to the low number of studies. Both studies were significant when comparing people with WAD to control groups, however, assessed different constructs (fear avoidance and self-efficacy).	Psychological factors are evaluated more consistently in prognostic cohort studies and intervention trials compared with cross-sectional designs, and psychological functioning is a critical outcome for these guidelines. Inconclusive findings were shown for fear avoidance and self-efficacy for determining those at risk of poor prognosis (see prognosis section evidence for further details).				
Undesirable Effects						
How substantial are the	How substantial are the undesirable anticipated effects associated with the assessment method?					
Judgement	Research evidence	Additional considerations				

 Large Moderate Small Trivial Varies Don't know 	Not reported	When assessing psychological factors, timing of screening those factors is important; screening too early (<1-month) might negatively influence the person's health outcome.
Balance of effects Does the balance betwe	een desirable and undesirable effects favour assessing or n	ot assessing these factors?
Judgement	Research evidence	Additional considerations
 Favours not assessing Probably favours not assessing Does not favour either assessing or not assessing Probably favours assessing Favours assessing Varies Don't know 	Does not favour either assessing or not assessing fear avoidance and self-efficacy in people with acute WAD.	Fear avoidance and self-efficacy had inconclusive evidence for determining those at risk of poor prognosis (see prognosis section evidence for further details).
Resources required How large are the resou	rce requirements (costs)?	
Judgement	Research evidence	Additional considerations
 Large costs Moderate costs Negligible costs and savings Moderate savings Large savings Varies Don't know 	In the research studies, the psychological factors were assessed using validated questionnaires. Fear avoidance: TSK-17 and the PFActS-C scale Self-efficacy: Self-Efficacy Scale (SES)	These questionnaires (fear avoidance and self-efficacy) are freely available online.
Equity What would be the Imp	act on health equity?	
Judgement	Research evidence	Additional considerations

 Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	No evidence	Primary HCP'S can easily administer these questionnaires, however, not all are translated to all languages.
Acceptability Is the assessment meth	od acceptable to key stakeholders?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	Most "assessment" studies do not report adverse events.	Some people might find it stressful to complete these questionnaires.
Feasibility Is the assessment meth	od feasible to implement?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	No evidence.	It is feasible because the factors are assessed by questionnaire. However, it should not be assessed in all groups; more likely to be assessed in those who are medium- high risk of poor prognosis. General Practitioners may lack time to administer and interpret these questionnaires.

A.4.6. Conclusions (additional psychological factors in acute WAD)

VOTE1: Assessment of fear avoidance and self-efficacy in people with acute WAD Are you for or against healthcare professionals assessing the following additional psychological factors in people with acute WAD: fear avoidance and self-efficacy?

Type of recommendation (fear avoidance and self-efficacy in people with acute WAD)

Strong consensus	Conditional consensus	Conditional consensus	Conditional consensus	Strong consensus
recommendation for not	recommendation to not	recommendation for either	recommendation for	recommendation for
measuring the factor(s)	measure the factor (s)	measuring the factor (s) or	measuring the factor (s)	measuring the factor(s)
		not		
0	0	•	0	0

Recommendations

The guideline panel cannot reach consensus for or against assessing the following additional psychological factors: fear avoidance and self-efficacy in people with acute WAD.

(Panel vote summary: 12/12 (100%) neutral)

Justification

- Psychological factors are generally evaluated in a prognostic context and used to determine the probability of poor recovery, rather than to determine the differences between people with WAD and other groups (refer to prognostic section in the guidelines). There is therefore limited evidence in the assessment component of the guideline.
- The two studies were significant, however, there is only one study for each construct and the findings are therefore inconclusive.
- Inconclusive findings were shown for fear avoidance and self-efficacy for determining those at risk of poor prognosis (refer to prognostic section in the guidelines).

Subgroup considerations

- People who are stratified as "low risk" of poor recovery are unlikely to present with psychological distress. These people are unlikely to require assessment of these factors.
- However, people with acute WAD who are stratified a "medium/high risk" of poor recovery might present the need for assessing psychological factors, depending on a person's clinical presentation (refer to prognostic section recommendations).

Implementation considerations

Indications:

For people who are stratified as medium-high risk of poor prognosis. Consider if relevant to clinical presentation.

How to assess:

- Fear avoidance, using the TSK-17 and PFActS-C scale
- Pain Self Efficacy, using the Pain Self Efficacy Questionnaire (PSEQ).

What to do:

- PSEQ scores 30-40 (amber) consider specific concerns and obstacles that the person might have (Prof. Michael Nicholas, University of Sydney, author communication).
- Manage the beliefs (fear avoidance and self-efficacy within management strategies).
- Consider psychologically informed exercise (see treatment recommendations).
- PSEQ scores of <30 indicates low confidence in the person's ability to resume functional activities while in pain. Consider multidisciplinary care (see treatment recommendations) to address obstacles. For context, mean PSEQ scores of people attending multidisciplinary pain clinics is ~21 (Prof Michael Nicholas, University of Sydney, author communication).
- Pain self-efficacy can be used to measure outcome in chronic phase.

https://www.mywhiplash.com.au/content/higher-risk-assessments#psychological-distress

Table 43: Evidence to decision framework (additional psychological factors in chronic WAD)

Strength of association How substantial are the assessed outcome differences between people with WAD and control populations?						
Judgement	Research evidence	Additional considerations				
•Trivial •Small • Moderate • Large • Varies	The strength of association for psychological factors is overall trivial due to limited evidence. There were significant differences in depression and cognitive deficits when comparing WAD to control groups. There was no significant difference in psychological distress	Psychological functioning is evaluated more consistently in prognostic cohort studies and intervention trials and is a critical outcome for these guidelines.				

○ Don't know	(Positive Symptom Distress) when comparing WAD and control groups.	Screening for a probable major depressive disorder in people with acute WAD was recommended in the prognosis section of these guidelines.
Undesirable Effects How substantial are the	undesirable anticipated effects associated with the assess	sment method?
Judgement	Research evidence	Additional considerations
 Large Moderate Small Trivial Varies Don't know 	Not reported	
Balance of effects Does the balance betwe	een desirable and undesirable effects favour assessing or n	ot assessing these factors?
Judgement	Research evidence	Additional considerations
 Favours not assessing Probably favours not assessing Does not favour either assessing or not assessing Probably favours assessing Favours assessing Varies Don't know 	Probably favours assessing for depression when considered in conjunction with evidence from prognostic cohort studies and the recommendation presented in these guidelines. Does not favour either assessing or not assessing for psychological distress symptoms and perceived cognitive deficits as the evidence was inconclusive.	Screening for a possible major depressive disorder was recommended to determine those at risk of poor prognosis.
Resources required How large are the resou	Irce requirements (costs)?	
Judgement	Research evidence	Additional considerations
 Large costs Moderate costs Negligible costs and savings Moderate savings 	In the research studies, the factors were assessed using scales including: Cognitive deficits: Perceived Deficits Questionnaire (PDQ) Depression: DSM-IV	Those questionnaires are easy to interpret. PDQ consists of 20 items that generates a total score and 4 subscale scores (attention/concentration, retrospective memory, prospective memory, and planning/organization).

 ○ Large savings ○ Varies 		Each item is rated on a 5-point scale ranging from 0 (never) to 5 (almost always).
 Don't know 		Depressive symptoms can be evaluated using the DASS-21.
Equity		
What would be the Imp	act on health equity?	
Judgement	Research evidence	Additional considerations
 Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	No evidence.	HCP's can easily administer these questionnaires, however, not all are translated to all languages.
Acceptability Is the assessment meth	nod acceptable to key stakeholders?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	Most "assessment" studies do not report adverse events.	Some people might find it stressful to complete these questionnaires
Feasibility Is the assessment meth	nod feasible to implement?	
Judgement	Research evidence	Additional considerations

A.4.7. Conclusions (additional psychological factors in chronic WAD)

VOTE 1: Assessment of depression in people with chronic WAD

Are you for or against healthcare professionals assessing the following psychological factors in people with chronic WAD: depression?

Type of recommendation (depression in people with chronic WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
0	0	Ο	•	0

Recommendations

There was guideline panel consensus to suggest that healthcare professionals assess the following depressive symptoms in people with chronic WAD.

(Panel vote summary: 11/12 (92%) conditional for, 1/12 (8%) neutral)

Justification

- There were significant differences in diagnosis of depression in chronic WAD compared with a control group in a single study.
- Screening for a probable major depressive disorder in people with acute WAD was recommended in the prognosis section of these guidelines.

Subgroups considerations

n/a

Implementation considerations

• Please refer to the prognosis section for psychological factors.

VOTE 2: Assessment of psychological distress symptoms and perceived cognitive deficits in people with chronic WAD.

Are you for or against healthcare professionals assessing the following psychological factors in people with chronic WAD: psychological distress symptoms and perceived cognitive deficits?

Type of recommendation (psychological distress symptoms and perceived cognitive deficits in people with chronic WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong recommendation consensus for measuring the factor(s)
0	0	•	0	0

Recommendations

The guideline panel cannot reach consensus for or against assessing the following: psychological distress symptoms and perceived cognitive deficits in people with chronic WAD.

(Panel vote summary: 12/12 (100% neutral)

Justification

- There were 2/3 studies significant. However, there were only few studies per construct.
- Psychological factors are usually used in term of prognostic context and to assist healthcare professionals to determine the probably of poor recovery rather than to determine differences between groups (refer to prognostic section in the guideline).

Subgroup considerations

n/a

Implementation considerations

Indications:

• Healthcare professionals might consider to additionally assess perceived cognitive deficit associated with depression if clinically indicated (e.g., if the person reports cognitive deficits). In these instances, recommendations are to use the – the Perceived Deficits Questionnaire Depression (PDQ-D) or 5-item version PDQ-D-5.

https://workingwithdepression.psychiatry.ubc.ca/leaps/perceived-deficits-questionnaire-pdq/

A.5. Additional Symptoms

What clinical assessments of additional symptoms assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).

A.5.1. Executive summary

What Additional Symptoms should healthcare professionals assess in people with acute and chronic whiplash?

Acute whiplash: Two cross-sectional studies evaluated symptoms in people with whiplash compared with controls or other pain conditions. Summary of findings here:

- Additional symptoms: 1/1 study showed patients present a higher prevalence of symptoms in people with WAD.
- Sleep quality: 1/1 study suggestive sleep disturbance in people with acute WAD.

Chronic whiplash: 4 cross-sectional studies evaluated symptoms in people with whiplash compared with controls or other pain conditions. Summary of findings here:

- Additional symptoms: 1/1 study indicates a higher prevalence of additional symptoms in people with WAD (e.g., dizziness).
- Jaw symptoms: 1/1 independent cohort showed patients present a higher frequency of jaw symptoms in people with WAD.
- Disabilities: 1/1 study indicates a higher prevalence of upper limb symptoms in people with WAD.

A.5.2. Acute additional symptoms

Additional symptoms

Category: Additional symptoms

Subcategories: Additional ssymptoms - Acute and Subacute WAD studies (n=2)

Table 44: Summary of included studies (acute additional symptoms)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Pajediene et	To investigate	71 people with	53 controls	Additional	93% of patients	Road traffic accidents	Significan
al., 2015)	acute WAD in	acute WAD	with no history	Symptoms	developed acute	induce whiplash-	t
	the Lithuanian	(<14d) (62%	of car		symptoms.	associated disorder in	
	population	female)	accidents			people who seek help	Symptoms

Patterns of acute whiplash- associated disorder in the Lithuanian population after road traffic accidents	unaware of the phenomenon.		(62% female)		The most frequent symptoms were neck or shoulder pain; reduced or painful neck movements, including decreased range of motion; multiple subjective symptoms according to QTFQ and significantly reduced pain threshold.	but who are unaware of the condition WAD.	WAD> C
(Valenza et al., 2012) Alteration in Sleep Quality in Patients with Mechanical Insidious Neck Pain and Whiplash- Associated Neck Pain	This study aimed to determine differences in sleep quality between people with mechanical neck pain, people with WAD, and healthy controls	22 people with acute (mean 22 days duration – paper table 1 WAD) (82% female)	18 healthy controls (78% female) 19 people with mechanical neck pain (79% female)	Sleep quality Pittsburgh Sleep Quality Index	People with WAD and mechanical neck pain group exhibited higher score in sleep quality (P < 0.001), sleep latency (P = 0.005), sleep efficiency (P = 0.002), sleep disturbances (P < 0.001), use of sleeping medication (P < 0.001), daytime dysfunction (P < 0.001), and total Pittsburgh Sleep Quality Index score (P < 0.001) compared to healthy control	Sleep disturbances are a common finding in individuals with neck pain	Significan t Sleep disturbanc e WAD>C

Excluded: Tannoury 2001 - Comparison acute WAD, illustrative finite element analyses of the neuraxis under conditions of deformative stress are presented in the two comparison groups of WAD

A.5.3. Acute additional symptoms evidence summary

Sub- category	Studies	Population	Measurement	Conclusion	Evidence Summary
Additional Symptoms	(Pajediene et al., 2015)	71 people with acute WAD 53 controls	Number of symptoms	93% of patients developed acute symptoms (Multiple symptoms)	1 – Sig
(Independen t cohort n=1)					
Sleep disturbance (Independen t	(Valenza et al., 2012)	22 WAD 19 mechanical neck pain 10 healthy controls	Pittsburgh Sleep Quality Index	Sleep disturbances are a common finding in individuals with neck pain	1 – Sig
cohort n=1)					

Table 45: Summary of evidence for included studies in acute additional symptoms

A.5.4. Chronic additional symptoms

Additional symptoms

Category: Additional symptoms

Subcategories: Additional Symptoms - Chronic and mixed WAD studies (>3mon) (n=4)

Table 46: Summary of included studies (chronic additional symptoms)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Anstey et al., 2016) Are people with whiplash- associated neck pain different from people with nonspecific neck pain?	To compare people with WAD to people with nonspecific neck pain, in terms of their baseline characteristics	488 people with WAD (68% female)	2090 people with non- specific neck pain (NSNP) (59% female)	Additional Symptoms Activity limitation Dizziness Morning stiffness	People with WAD were statistically different from people with NSNP for all characteristics investigated (P<.006), except for	Individuals presenting to secondary care with persistent WAD experience greater symptom severity and poorer long-	Significant

	and pain and disability outcomes over 1 year				frequency of neck pain (P = .094). Most substantial differences between groups were the presence of dizziness and memory difficulties	term outcomes than those with NSNP	
(Haggman- Henrikson et al., 2011)* Frequent jaw- face pain in chronic Whiplash- Associated Disorders	To investigate the frequency of jaw-face pain and general symptoms	50 subjects with WAD (78% female)	50 control subjects	Jaw symptoms The jaw-face- head region and frequency of general symptoms. Multiple symptoms	88% of people with WAD reported frequent pain in the jaw-face, frequent pain in the neck (100%), shoulders (94%), head (90%) and back (27%). The people with WAD also reported stiffness and numbness in the jaw-face region and frequent general symptoms such as balance problems, stress, and sleep disturbances.	Frequent pain in the jaw and face can be part of the spectrum of symptoms in chronic WAD.	Significant Jaw and face symptoms WAD>C

(Gronqvist et al., 2008)* Impaired jaw function and eating difficulties in whiplash- associated disorders	To test the hypothesis of an association between neck injury and impaired eating behaviour	50 subjects with WAD (78% female)	50 control subjects	Eating dysfunction	People with WAD after the accident, reported pain and dysfunction during mouth symptoms, biting chewing, swallowing and yawning and felt fatigue, stiffness and numbness in the jaw-face region.	Suggest an association between neck injury and disturbed jaw function.	
(See & Treleaven, 2015) Identifying upper limb disability in patients with persistent whiplash	To identify symptoms and the degree and nature of UL functional difficulties.	24 people with chronic WAD (>3mo) (87.5% female)	24 asymptomatic controls (75% female)	Disabilities Disabilities of the Arm, Shoulder and Hand (DASH)	The results suggest that upper limb (UL) symptoms and functional deficits are prevalent in persistent WAD. All individual item scores on the DASH, except one, were significantly higher in the WAD group and the control group	Indicate the presence of upper limb symptoms in persistent WAD as well as limb functional difficulties.	Significant UL WAD>C

*2 papers reported on the same cohort - Haggman-Henrikson 2011 and Gronqvist 2008

A.5.5. Chronic additional symptoms evidence summary

Table 47: Summary of evidence for included studies in chronic additional symptoms
Sub- category	Studies	Population	Measurement	Conclusion	Evidence Summarv
Additional Symptoms	(Anstey et al., 2016)	488 WAD 2090 people with non-	Activity limitation Dizziness Morning stiffness	Persistent WAD experience greater symptom severity and poorer long-term outcomes than those with NSNP	1 – Sig
(Independent cohort n=1)		specific neck pain (NSNP)			
Jaw symptoms (Independent cohort n=1)	(Haggman- Henrikson et al., 2011) (Gronqvist et al. 2008)	50 WAD 50 controls	Reported frequent of jaw and face symptoms	Frequent pain in the jaw and face can be part of the spectrum of symptoms in chronic WAD.	1 – Sig
Disability (Independent cohort n=1)	(See & Treleaven, 2015)	24 WAD 24 controls	Upper limb disabilities (DASH)	Indicate the presence of upper limb symptoms in persistent WAD as well as limb functional difficulties.	1 – Sig

Table 48: Evidence to decision framework (additional symptoms in acute and chronic WAD)

Strength of association		
How substantial are the	e assessed outcome differences between people with WAD	and control populations?
Judgement	Research evidence	Additional considerations
∘Trivial	Consistent findings across the included studies showing	
●Small	increased jaw symptoms, upper limb disability, and	
 Moderate 	sleep disturbance in WAD. Although all acute and	
∘ Large	chronic studies showed significance when comparing	
∘ Varies	WAD to control groups, what they assessed varied	
 Don't know 	across all studies.	
Undesirable Effects		
How substantial are the	e undesirable anticipated effects associated with the asses	sment method?
Judgement	Research evidence	Additional considerations
∘ Large	Not reported	Requires only questionnaire and/or self-report symptoms
 Moderate 		(e.g. DASH, Pittsburgh Sleep Quality Index).
∘ Small		
 Trivial 		
∘ Varies		
○ Don't know		

Balance of effects		
Does the balance betwe	een desirable and undesirable effects favour assessing or n	ot assessing these factors?
Judgement	Research evidence	Additional considerations
 Favours not 	Probably favour assessing.	
assessing	Although what they assessed varied across all studies,	
 Probably favours 	healthcare professionals might assess symptoms	
not assessing	depending on the person's individual presentation.	
\circ Does not favour		
either assessing or		
not assessing		
 Probably favours 		
assessing		
 Favours assessing 		
∘ Varies		
○ Don't know		
Resources required		
How large are the resou	urce requirements (costs)?	
Judgement	Research evidence	Additional considerations
 Large costs 	The research studies assessed disability due to upper	These questionnaires (DASH AND PSQI) are freely available
 Moderate costs 	limb pain and sleep quality using validated	online.
 Negligible costs and 	questionnaires:	
savings	Disabilities of the Arm, Shoulder and Hand (DASH)	
 Moderate savings 	Pittsburgh Sleep Quality Index (PSQI	
 Large savings 		
∘ Varies		
○ Don't know		
Equity		
What would be the Impa	act on health equity?	
Judgement	Research evidence	Additional considerations

 Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	No evidence.	Primary HCP'S can easily administer these questionnaires, however, not all are translated to all languages.
Acceptability Is the assessment meth	od acceptable to key stakeholders?	
Judgement	Research evidence	Additional considerations
• No	Most "assessment" studies do not report adverse	Some people might find it stressful to complete these
 Probably no 	events.	questionnaires.
\circ Probably yes		
● Yes		
\circ Varies		
○ Don't know		
Feasibility		
Is the assessment meth	od feasible to implement?	
Judgement	Research evidence	Additional considerations
• No	Most studies do not report adverse events.	It is feasible because a questionnaire assesses the factors.
○ Probably no		However, it should be assessed depending on the persons
 Probably yes 		presentation.
• Yes		
Feasibility Is the assessment meth Judgement • No • Probably no • Probably yes • Yes • Varies • Don't know	od feasible to implement? Research evidence Most studies do not report adverse events.	Additional considerations It is feasible because a questionnaire assesses the factors. However, it should be assessed depending on the persons presentation.

A.5.6. Conclusion (additional symptoms in acute and chronic WAD)

VOTE1: Assessment of other symptoms (jaw, upper limb sleep quality) in people with acute and chronic WAD

Are you for or against healthcare professionals assessing the following additional symptoms in people with acute and chronic WAD: jaw symptoms, upper limb disabilities, sleep quality??

Type of recommendation (other symptoms in people with acute and chronic WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendations for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
0	0	0	•	0

Recommendations

There was guideline panel consensus to suggest that healthcare professionals assess the following additional symptoms in people with acute and chronic WAD.

(Panel vote summary: 10/12 (83%) condition for, 2/12 (17%) neutral)

Justification

- Studies were significant. However, there is only one study for each construct, and the findings are small.
- Assessing additional symptoms is usual practice for healthcare professionals to ask people about.
- Those symptoms are frequently reported in other musculoskeletal conditions, e.g., sleep disturbance.

Subgroups considerations

n/a

Implementation considerations

- Assessing symptoms is part of routine history. HCPs are already recommended to assess pain intensity, neck disability, pain sites, number of symptoms and specific symptoms such as headache and dizziness.
- HCPs should be aware that other areas that may be symptomatic are the aw and upper limb. Sleep quality/ disturbance is also recommended to be assessed.

How to assess:

- Sleep Quality: Pittsburgh Sleep Quality Index (PSQI)
- Disability of the Arm Shoulder and Hand (DASH) to assess person's ability to perform upper limb activities.

What to do:

• If sleep quality is impaired: It's important to help people understand that sleep issues are common and manageable and that negative thoughts about sleep can worsen symptoms. Encourage small steps towards better sleep routines and check how sleep issues are affecting physical therapy. If sleep deprivation is severe, check their safety for certain activities (e.g., driving). Suggest they speak to their GP about sleep issues and consider seeing a psychologist for targeted support. Self-guided sleep resources can also be helpful as a starting point or while waiting for professional help.

A.6. Advanced medical testing

What advanced medical testing methods assist in: a) classifying the grade of whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).

A.6.1. Executive summary

What Advanced medical testing should healthcare professionals assess in people with acute and chronic whiplash?

Acute whiplash: Two prospective studies evaluated advanced medical testing in people with whiplash compared with controls or other pain conditions. Those two studies evaluated WAD subgroups. Summary of findings here:

- Stress hormone: 1/1 study found cortisol concentration in people with WAD score II–III was lower than in people with WAD score I.
- Inflammatory biomarkers: 1/1 study found the recovered/mild disability WAD group had higher levels of tumour necrosis factor alpha (TNFα) at both time points than the moderate/severe WAD group and healthy controls, and 2/2 studies found a higher percentage of the inflammatory biomarker in people with acute WAD than controls.

Chronic whiplash: 5 cross-sectional studies advanced medical testing in people with whiplash compared with controls or other pain conditions. There is 1 study that evaluated advanced medical testing in sub-groups of people with WAD. Summary of findings here:

- Stress hormone: 1/1 study found dysregulation of hypothalamus pituitary adrenal (HPA) in people with WAD.
- Inflammatory biomarkers: 1/1 study found higher C11 (S-(+)-(d)-D-deprenyl (DDE) retention in people with whiplash in tissue regions adjacent to the spinous process and vertebra.
- Cerebral flow: 1/2 studies found lowered temporo-occipital blood flow in people with acute WAD than controls.
- Others: 1/1 study (Nerve fibre density) suggests small fibre structural and functional deficits in chronic and 1/1 study Genetic marker-Individuals with a COMT pain vulnerable genotype were more likely to report moderate- to-severe musculoskeletal neck, headache and dizziness

A.6.2. Acute advanced medical testing

Stress hormone

Category: Advanced medical testing

Sub-category: Stress hormone - Acute and Subacute WAD studies (n=1)

Table 49: Summary of included studies (acute stress hormone)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Shaked et al., 2020) Can cortisol levels predict the severity of acute whiplash- associated disorders?	This prospective observational study was to investigate the relationship between acute serum cortisol concentrations and the severity of whiplash- associated disorders.	55 people) with acute WAD (<6h from injury) (45.5% female 36 WAD I 17 WAD II 12 WAD III		Stress hormone Serum cortisol concentratio n Blood sampling	The mean cortisol concentration of the people with WAD score 2–3 was significantly lower compared to the WAD 1, 9.5±6.9 vs. 13.22±8.3 µg% (p=0.02). The mean cortisol concentrations increased significantly from mild through moderate to serious grade of severity of accident as perceived by the person, 9.64±4.82, 11.59±6.85, 17.39±12.1 µg%	The mean cortisol concentration of the people with WAD score 2–3 was significantly lower compared to the people with whiplash- associated disorder score 1. Low or relatively low cortisol concentrations might be associated with more severe forms of the disorder	WAD I ≠ WAD II-III*

Inflammatory biomarkers

Category: Advanced medical testing

Sub-category: Inflammatory biomarkers- Acute and Subacute WAD studies (n=2)

Table 50 Summary of included studies (acute inflammatory biomarkers).

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
-------------	-----	----------------	--------------------------	-----------------------------	---------	----------	-----------------

(Sterling et al., 2013) The Course of Serum Inflammatory Biomarkers Following Whiplash Injury and Their Relationship to Sensory and Muscle Measures: A Longitudinal Cohort Study	This study aimed to prospectively investigate changes in serum inflammatory biomarker levels from the acute (3 months) stages of whiplash injury	44 people with acute WAD (<3mo) (75% female)	18 asymptomatic controls (78% female)	Inflammatory Biomarkers Venous blood sampling	The recovered/mild disability WAD group had higher levels of TNF- α at both time points than both the moderate/severe WAD group and healthy controls. There were no differences found in serum IL-1 β . Moderate relationships were found between hyperalgesia and CRP at both time points and between hyperalgesia and IL- 1 β 3 months post- injury.	Inflammatory biomarkers may play a role in outcomes following whiplash injury and WAD associated with hyperalgesia and fatty muscle infiltration in the cervical extensors.	Significant
(Kivioja, Rinaldi, et al., 2001) Chemokines and their receptors in whiplash injury: Elevated RANTES and CCR-5	To investigate involvement of the immune system in WAD	29 people with acute WAD (<4d) (34% female)	14 healthy controls (50% female)	Inflammatory Biomarkers Flow cytometry	Higher percentages of blood mononuclear cells (MNC) and T cells observed in people with WAD at 3 days post-injury compared with healthy controls (p<0.05). No differences between groups at 14 days.	Compared to healthy controls, acute WAD is associated with systemic but transient dysregulation in MNC and T cells.	Significant

(Kivioja, Ozenci, et al., 2001) Systemic immune response in whiplash injury and ankle sprain: elevated IL-6 and IL-10	To investigate involvement of the immune system in WAD, ankle sprain, MS and healthy subjects	27 people with acute WAD (33% female)	 14 people with acute ankle sprain (35% female) 27 people with multiple sclerosis (66% female) 23 healthy controls (69% female) 	Inflammatory Biomarkers Blood Cytokine- secreting cells.	Higher percentages of blood mononuclear (MNC) cells observed in people with WAD at 3 days post-injury compared with healthy controls (p<0.01). Similar results obtained for people with ankle sprain (p<0.01) versus healthy controls. Changes in MNC dissipate at 14 days.	Acute WAD is associated with systemic but transient dysregulation in MNC. Similar responses are found in people with acute ankle sprain.	Significant
---	--	---	--	---	--	--	-------------

A.6.3. Acute advanced medical testing evidence summary

Table 51: Summary of evidence for included studies in acute medical testing

Sub- category	Studies	Population	Measurement	Conclusion	Evidence Summary
Stress hormone	(Shaked et al., 2020)	36 WAD I; 17 WAD II; 12 WAD III	Cortisol levels	Low or relatively low cortisol concentrations in WAD 2-3 compared to WAD 1.	WAD I ≠ WAD II-III*
(Independent cohorts n=1)					
Inflammatory biomarkers (Independent cohorts n=3)	(Sterling et al., 2013)	44 acute WAD; 18 controls	Inflammatory Biomarkers Venous blood sampling	Inflammatory biomarkers may play a role in outcomes following whiplash injury and WAD associated with hyperalgesia and fatty muscle infiltration in the cervical extensors.	3 – Sig
	(Kivioja, Rinaldi, et al., 2001)	29 acute WAD; 14 controls	Inflammatory Biomarkers Flow cytometry	Acute WAD is associated with systemic but transient dysregulation in MNC, and T cells compared to healthy controls.	

(Kivioja, Ozenci, et al., 2001)	27 acute WAD; 14 acute ankle sprains	Inflammatory Biomarkers	Acute WAD is associated with systemic but transient dysregulation in MNC. Similar responses are found in people with acute ankle sprain.	
	27 multiple scleroses 23 controls	Cytokine-secreting cells.		

A.6.4. Chronic advanced medical testing

Stress hormone

Category: Advanced medical testing

Sub-category: Stress hormone – Chronic and mixed WAD studies (n=1)

Table 52: Summary of included studies (chronic stress hormone)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Gaab et al., 2005)	To investigate endocrine abnormalities	20 people) with chronic WAD (>6mo)	20 healthy controls	Stress hormone	People with chronic WAD demonstrated dysregulation of the	People with chronic WAD demonstrated dysregulation of the	Significant
Reduced reactivity and enhanced negative feedback	in chronic WAD versus healthy controls	(50% female)	(50% female)	Serum cortisol concen- tration	HPA axis (through attenuated cortisol responses on awakening and suppression of	HPA axis (through attenuated cortisol responses on awakening and suppression of	
sensitivity of the hypothalamu s pituitary adrenal (HPA) axis in chronic WAD				saliva sampling	cortisone after administration of dexamethasone) when compared to healthy controls.	cortisone after administration of dexamethasone) when compared to healthy controls.	

Inflammatory biomarkers

Category: Advanced medical testing

Sub-category: Inflammatory biomarkers – Chronic and mixed WAD studies (n=1)

 Table 53: Summary of included studies (chronic inflammatory biomarkers)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Linnman et al., 2011) Elevated [11C]-D- deprenyl uptake in chronic Whiplash Associated Disorder suggests persistent musculoskele tal inflammation	Explores if C11 (S-(+)-(d)-D- deprenyl (DDE) retention is elevated in the neck region in people with chronic WAD as compared to pain-free controls.	22 participants with WAD II (>6 months) (75% female)	14 healthy controls (75% female) 6 people with acute musculoskelet al pain (sprained ankle) (50% female)	Biomarkers 3D dynamical PET-CT (Carbon-11 marked DDE)	People with WAD had significantly higher DDE retention than controls in tissue regions adjacent to spinous process of the second vertebra (right C2 ROI p= 0.008, left C2 ROI p= 0.015), in the normal muscle tissue (p = 0.027) and in the peak soft tissue ROI (p = 0.035), but similar levels in the in the spongeus bone of the cervical vertebra (p = 0.48)	WAD has signs of local persistent peripheral tissue inflammation, which may serve as a diagnostic biomarker.	Significant

Cerebral blood flow

Category: Advanced medical testing

Sub-category: Cerebral blood flow Chronic and mixed WAD studies (n= 2 studies)

Table 54: Summary of included studies (chronic cerebral blood flow)

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Linnman et	To compare	21 participants	18 healthy	Cerebral	Patients had	Suggest an	Significant
al., 2009)	resting state	with WAD II (>6	controls	blood flow	heightened resting	involvement of the	
	regional	months)	(50% female)		rCBF bilaterally in	posterior cingulate,	WAD <c< td=""></c<>
	cerebral blood	(80% female)			the posterior	parahippocampal and	

Chronic whiplash symptoms are related to altered regional cerebral blood flow (rCBF) in the resting state	flow (rCBF) by means of positron emission tomography with 150 labelled water in people with WAD with controls.			Positron emission tomography (PET)	parahippocampal and the posterior cingulate gyri, in the right thalamus and the right medial prefrontal gyrus as well as compared with healthy controls. The altered rCBF in the patient group was correlated to neck disability ratings	medial prefrontal gyri in WAD and speculate that alterations in the resting state are linked to an increased self-relevant evaluation of pain and stress.	
(Sundstrom et al., 2006) Altered cerebral blood flow in chronic neck patients but not in whiplash patients: a 99mTc- HMPAO rCBF study	To compare cerebral blood flow in people with chronic WAD, people with chronic neck pain (without trauma) and healthy controls	27 people with chronic WAD (67% women)	18 people with chronic neck pain (72% women) 15 healthy controls (47% women)	Cerebral blood flow Single photon emission computed tomography (SPECT) using technetium9 9m hexamethylp ropylene amine oxime (HMPAO)	Significant regional blood flow changes in chronic neck pain group, no change in WAD or healthy controls (p<0.05).	Differences in blood flow suggest different pain mechanisms for chronic neck pain and WAD groups.	NS

Chronic - Others Category: Advanced medical testing Sub-category: Others – Chronic and mixed WAD studies (n= 2 studies)

Table 55: Summary of included studies (chronic others)

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(F Scott et al., 2020) Small fibre pathology in chronic whiplash- associated disorder: A cross- sectional study	Small fibre pathology in chronic whiplash- associated disorder: A cross- sectional study	24 people with chronic (>3mo) WAD (67% female)	24 pain-free controls (67% female)	Skin biopsy Nerve fibre density	The WAD group exhibited lower IENFD at the finger (WAD: median [IQR] 4.5 [4.9] fibres/mm; control 7.3 [3.9]; p = .010, but not the ankle (WAD: mean [SD] 7.3 [3.7] fibres/mm; control 9.3 [3.8]; p = .09). Dermal innervation was lower in the WAD group at the finger (WAD: median [IQR] 3.7 [2.8] nerve bundles/mm2; controls: 4.9 [2.1]; p = .017) but not the ankle (WAD: median [IQR] 2.1 [1.9] nerve bundles/mm2; controls: 1.8 [1.8]; p = .70). In the WAD group, hand thermal and light touch detection were impaired, and heat pain thresholds were lowered ($p \le .037$).	Findings suggest small fibre structural and functional deficits in chronic WAD, implicating potential involvement of small fibre pathology	Significan t
(McLean et al., 2011) COMT haplotype	COMT haplotype predicts immediate musculoskelet	89 people with acute WAD (54% females)	People sub- grouped on COMT genotype.	Genetic marker (COMT)	Individuals with a COMT pain vulnerable genotype were more likely to report moderate- to-	The identification of genes associated with post-MVC symptoms may also provide	Significan t

predicts immediate musculoskel etal neck pain and psychologica l symptoms after MVC	al neck pain and psychological symptoms after MVC		severe musculoskeletal neck pain (76 versus 41%, RR = 2.11 (1.33 - 3.37)), moderate or severe headache (61 versus 33%, RR = 3.15 (1.05 - 9.42)), and moderate or severe dizziness (26 versus 12%, RR = 1.97 (1.19 - 3.21)). Individuals with a pain vulnerable genotype also experienced more dissociative symptoms in the ED, and estimated a longer time to physical recovery (median 14 versus 7 days, p = .002) and	new insights into pathophysiology.	
			days, p = .002) and emotional recovery (median 8.5 versus 7 days, p = .038)		

A.6.5. Chronic advanced medical testing evidence summary

Table 56: Summary of evidence for included studies in chronic advanced medical testing

Sub- category	Studies	Population	Measurement	Conclusion	Evidence Summary
Stress hormone	(Gaab et al., 2005)	20 patients 20 Control	Cortisol levels	Chronic WAD patients demonstrated dysregulation of the HPA axis through attenuated cortisol.	1 – Sig
(Independent cohort n=1)					

Inflammatory biomarkers (Independent cohort n=1)	(Linnman et al., 2011)	22 acute WAD; 6 sprained ankles 14 controls	Inflammatory biomarker	WAD have signs of local persistent peripheral tissue inflammation	1 – Sig
Cerebral blood flow (Independent cohorts n=2)	(Linnman et al., 2009)	21 WAD II 18 controls	Positron emission tomography (PET)	Altered regional cerebral blood flow in resting state in WAD	1 – Sig 1 – NS
	(Sundstrom et al., 2006)	27 WAD 18 chronic neck pain 15 controls	Single photon emission computed tomography (SPECT)	No alteration to regional cerebral blood flow detected in chronic WAD subjects	
Others (Independent cohorts n=2)	(F Scott et al., 2020)	24 WAD 24 Control	Skin biopsy Nerve fibre density	Suggest small fibre structural and functional deficits in chronic WAD, implicating potential involvement of small fibre pathology.	2 – Sig
	(McLean et al., 2011)	89 WAD People sub- grouped on COMT genotype	Genetic marker (COMT)	Individuals with a COMT pain vulnerable genotype were more likely to report moderate- to-severe musculoskeletal neck, headache and dizziness	

Table 57: Evidence to decision framework (advanced medical testing in acute WAD)

Strength of association How substantial are the assessed outcome differences between people with WAD and control populations?						
Judgement	Research evidence	Additional considerations				
∘Trivial	Stress hormone: people with WAD score 2–3 was	These studies are more exploratory studies that investigate				
●Small	significantly lower compared to the WAD I	the mechanism instead of being a validated accuracy				
 Moderate 	Inflammatory biomarkers: Significant differences in	diagnostic study.				
∘ Large	inflammatory biomarker levels in people with WAD	Acute inflammatory responses are expected post-injury.				
○ Varies	compared with controls (3/3 studies).					
 Don't know 						
Undesirable Effects						
How substantial are the undesirable anticipated effects associated with the assessment method?						
Judgement	Research evidence	Additional considerations				

○ Large	Saliva and blood tests are required to evaluate stress	
○ Moderate	hormone and inflammatory biomarkers. Undesirable	
∘ Small	effects not reported in studies but are likely to be trivial.	
Trivial		
∘ Varies		
○ Don't know		
Balance of effects		
Does the balance betwe	een desirable and undesirable effects favour assessing or n	ot assessing these factors?
Judgement	Research evidence	Additional considerations
 Favours not 	Differences in stress hormone and inflammatory	
assessing	biomarkers were found, however, the studies are more	
• Probably favours not	explanatory and not diagnostic accuracy studies.	
assessing		
 Does not favour 		
either assessing or		
not assessing		
 Probably favours 		
assessing		
 Favours assessing 		
 ∨ Varies 		
 Don't know 		
Resources required		
How large are the reso	urce requirements (costs)?	
Judgement	Research evidence	Additional considerations
 Large costs 	Not reported.	Saliva and blood tests are relatively low cost
 Moderate costs 		
Negligible costs and		
savings		
 Moderate savings 		
 Large savings 		
 ○ Varies 		
 Don't know 		
Equity		
What would be the Imp	act on health equity?	
Judgement	Research evidence	Additional considerations

 Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	No evidence.	Saliva and blood tests are generally available.
Acceptability Is the assessment meth	od acceptable to key stakeholders?	
Judgement	Research evidence	Additional considerations
• No		Saliva and blood tests are in routine use in clinical settings.
 Probably no 		
 Probably yes 		
• Yes		
○ Varies		
○ Don't know		
Feasibility		
Is the assessment meth	od feasible to implement?	
Judgement	Research evidence	Additional considerations
• No		Saliva and blood tests are in routine use in clinical settings.
 Probably no 		
 Probably yes 		
• Yes		
○ Varies		
 Don't know 		

A.6.6. Conclusion (advanced medical testing in acute WAD)

VOTE1: Assessment of stress hormone and inflammatory biomarkers in people with acute WAD

Are you for or against healthcare professionals assessing the following advanced medical testing in people with acute WAD: stress hormone and inflammatory biomarkers?

Type of recommendation (stress hormone and inflammatory biomarkers in people with acute WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
•	0	0	0	0

Recommendations

There was strong guideline panel consensus that primary healthcare professionals do not assess the following in people with acute WAD. (Panel vote summary: 11/12 92% strong against; 1/112 8% conditional against)

Justification

- These studies are more explanatory studies and not diagnostic studies. Therefore, it would not help diagnose WAD conditions or the treatment direction.
- Only a few studies and weak evidence.

Table 58: Evidence to decision framework advanced medical testing in chronic WAD

Strength of association		
How substantial are the	e assessed outcome differences between people with WAD	and control populations?
Judgement	Research evidence	Additional considerations
∘Trivial	Although most chronic studies showed significance	These studies are more exploratory studies investigating
●Small	when comparing WAD to control groups, what they	the mechanism instead of being a validated accuracy
 Moderate 	assessed, and the technique used varies across all	diagnostic study.
∘ Large	studies.	
∘ Varies		
 Don't know 	Stress hormone (cortisol): only one study comparing	
	chronic WAD to control.	
	Inflammatory biomarkers: Only one study showed	
	higher DDE retention than controls in the spinous	
	process of the second vertebra and muscle tissue.	
	Cerebral blood flow: Inconclusive evidence, with 1/2	
	studies showing cerebral blood flow than the control	
	group.	

Skin biopsy (nerve fibre density) - only one study showing small fibre structural and functional deficits in WAD. Genetic marker - Individuals with a COMT pain vulnerable genotype were more likely to report moderate- to -severe musculoskeletal neck pain, headache and dizziness Undesirable Effects How substantial are the undesirable anticipated effects associated with the assessment method? Judgement Research evidence Additional considerations O Large Saliva and blood tests are required to evaluate stress Moderate hormones and inflammatory biomarkers. Undesirable Small effects not reported in studies but are likely to be trivial Trivial for all assessment types Don't know Differences in the stress hormone, inflammatory Balance of effects Differences in the stress hormone, inflammatory Sassessing biomarkers, genetic marker, and nerve fibre density Probably favours not more replanatory and not diagnostic accuracy studies. accuracy studies. Probably favours accuracy studies. Probably favours accuracy studies. Probably favours accuracy studies.			
showing small fibre structural and functional deficits in WAD. Senetic marker - Individuals with a COMT pain vulnerable genetype were more likely to report moderate - to-severe musculoskeletal neck pain, headache and dizziness Undesirable Effects How substantial are the undesirable anticipated effects associated with the assessment method? Judgement Research evidence Additional considerations O Large Saliva and blood tests are required to evaluate stress hormones and inflammatory biomarkers. Undesirable Additional considerations O Varies Normes and inflammatory biomarkers. Undesirable of all assessment types Additional considerations Balance of effects Doort know Research evidence Additional considerations Probably favours not assessing Research evidence Additional considerations Additional considerations Probably favours not assessing Doort know Research evidence Additional considerations Probably favours not assessing curacy studies. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. accuracy studies. Probably favours assessing Favours assessing o nort know accuracy studies. accuracy studies. Probably favours assessing Favours assessing o nort know accuracy studies. accuracy studies.		Skin biopsy (nerve fibre density) – only one study	
WAD. Genetic marker - Individuals with a COMT pain vulnerable genotype were more likely to report moderate- to-severe musculoskeletal neck pain, headache and dizziness Image: Comparison of the compari		showing small fibre structural and functional deficits in	
Genetic marker - Individuals with a COMT pain vulnerable genotype were more likely to report moderate- to-severe musculoskeletal neck pain, headache and dizziness Additional considerations Undesirable Effects Research evidence Additional considerations Judgement Research evidence Additional considerations O Large Saliva and blood tests are required to evaluate stress hormones and inflammatory biomarkers. Undesirable Additional considerations O Small effects not reported in studies but are likely to be trivial for all assessment types Farours not assessing Don't know Don't know Balance of effects Balance of effects Dese the balance between desirable and undesirable effects favour assessing these factors? Judgement Research evidence Additional considerations • Favours not assessing Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Additional considerations • Probably favours not assessing cacuracy studies. accuracy studies. • Probably favours assessing eacuracy studies. accuracy studies. • Probably favours assessing exerch evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. exerch evidence • Probably fav		WAD.	
vulnerable genotype were more likely to report moderate- to-severe musculoskeletal neck pain, headache and dizziness Undesirable Effects How substantial are the undesirable anticipated effects associated with the assessment method? Judgement Research evidence Additional considerations Large Saliva and blood tests are required to evaluate stress Additional considerations Small or and inflammatory biomarkers. Undesirable effects not reported in studies but are likely to be trivial or varies for all assessment types Don't know Balance of effects Research evidence Additional considerations Balance of effects Description desirable and undesirable effects favour assessing or not assessing these factors? Judgement Provably favours not assessing or or tassessing or not assessing or or tassessing or or tassessing or or tassessing Probably favours assessing Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density biomarkers, genetic marker, and nerve fibre density biomarkers genetic marke		Genetic marker - Individuals with a COMT pain	
moderate- headache and dizzinessUndesirable EffectsHow substantial are the undesirable anticipated effects associated with the assessment method?JudgementResearch evidenceAdditional considerationsOkoderateSaliva and blood tests are required to evaluate stress hormones and inflammatory biomarkers. Undesirable effects not reported in studies but are likely to be trivial for all assessment typesO' Varieso' variesDoes the balance of effectsResearch evidenceJudgementResearch evidenceAdditional considerationsBalance of effectsDoes the balance between desirable and undesirable effects favour assessing or o Probably favours not assessingO Does not favourO Does not favourO' Probably favoursO' Does not favourO' Does		vulnerable genotype were more likely to report	
Indesirable Effects How substantial are the undesirable anticipated effects associated with the assessment method? Judgement Research evidence Additional considerations > Large Saliva and blood tests are required to evaluate stress Additional considerations > Moderate hormones and inflammatory biomarkers. Undesirable effects not reported in studies but are likely to be trivial > Trivial for all assessment types for all assessment types > Varies > Don't know Additional considerations Balance of effects Research evidence Additional considerations > Favours not Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. accuracy studies. > Probably favours assessing - Exours assessing - Contracy studies. > Probably favours assessing - Exours assessing - Contracy studies. > Probably favours - Exours assessing - Contracy studies. > Probably favours - Exours assessing - Contracy studies. > Probably favours - Favours assessing - Contracy studies. > Probably f		moderate- to-severe musculoskeletal neck pain,	
Undesirable Effects How substantial are the undesirable anticipated effects associated with the assessment method? Judgement Research evidence • Large Saliva and blood tests are required to evaluate stress • Moderate hormones and inflammatory biomarkers. Undesirable • Small effects not reported in studies but are likely to be trivial • Trivial for all assessment types • Don't know Balance of effects Budgement Research evidence • Favours not assessing • Probably favours not Differences in the stress hormone, inflammatory assessing Differences in the stress hormone, inflammatory • Probably favours not ascurice evidence for cerebral blood flow. However, • Don't know either assessing • Probably favours assessing explanatory studies. • Probably favours accuracy studies. • Favours assessing explanatory studies. • Favours assessing explanatory studies. • Probably favours explanatory and not diagnostic accuracy studies. explanatory and not diagnostic • Favours assessing explanatory studies. • Probably favours		headache and dizziness	
How substantial are the undesirable anticipated effects associated with the assessment method? Judgement Research evidence Additional considerations O Large Saliva and blood tests are required to evalue stress hormones and inflammatory biomarkers. Undesirable effects not reported in studies but are likely to be trivial or all assessment types Additional considerations Strivial for all assessment types Additional considerations Balance of effects Doort know Research evidence Balance of effects Research evidence Additional considerations Paugement Research evidence Additional considerations Favours not Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, o Dees not favour either assessing o Probably favours assessing Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. Additional considerations Probably favours assessing Favours assessing o Probably favours assessing Favours assessing o Probably favours assessing Pavours assessing Favours assessing Favours assessing Probably favours assessing Favours assessing Probably favours assessing Favours assessing	Undesirable Effects		
Judgement Research evidence Additional considerations 0 Large Saliva and blood tests are required to evaluate stress hormones and inflammatory biomarkers. Undesirable Additional considerations 0 Moderate hormones and inflammatory biomarkers. Undesirable effects not reported in studies but are likely to be trivial for all assessment types Image: Saliva and blood tests are required to evaluate stress bormones and inflammatory biomarkers. Undesirable of all assessment types Balance of effects Don't know Research evidence Additional considerations Balance of effects Research evidence Additional considerations Judgement Research evidence Additional considerations • Favours not assessing Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. accuracy studies. • Favours assessing • Favours assessing • Favours assessing • Favours assessing • Favours not assessing • Favours assessing • Favours assessing • Favours assessing • Favours assessing • Favours assessing • Favours assessing • Favours assessing • Favours assessing • Favours assessing • Favours assessing	How substantial are the	e undesirable anticipated effects associated with the asses	sment method?
o Large Saliva and blood tests are required to evaluate stress o Moderate hormones and inflammatory biomarkers. Undesirable o Small effects not reported in studies but are likely to be trivial o Varies o Varies o Dort know Balance of effects Does the balance between desirable and undesirable effects favour assessing or not assessing these factors? Judgement Research evidence • Favours not Differences in the stress hormone, inflammatory assessing biomarkers, genetic marker, and nerve fibre density o Deos not favour either sasessing o Favours assessing accuracy studies. o Forbably favours assessing accuracy studies. o Favours assessing biomarkers. o Favours assessing accuracy studies. o Favours assessing biomarkers. o Favours assessing accuracy studies. o Favours assessing accuracy studies. o Favours assessing biomarkers. o Triknow Resources required </td <td>Judgement</td> <td>Research evidence</td> <td>Additional considerations</td>	Judgement	Research evidence	Additional considerations
• Moderate hormones and inflammatory biomarkers. Undesirable • Small effects not reported in studies but are likely to be trivial • Trivial for all assessment types • Varies • Don't know Balance of effects Does the balance between desirable and undesirable effects favour assessing or not assessing these factors? Judgement Research evidence Additional considerations • Fravours not Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density • Probably favours not Differences for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. • Probably favours accuracy studies. accuracy studies. • Don't know Essessing accuracy studies. • Probably favours assessing • Favours assessing • Favours assessing • Probably favours • Favours assessing • Essures • Don't know • Base more explanatory and not diagnostic accuracy studies. • Essures • Don't know • Base more explanatory and not diagnostic accuracy studies. • Essures • Don't know • Base more explanatory and not diag	○ Large	Saliva and blood tests are required to evaluate stress	
Small effects not reported in studies but are likely to be trivial Trivial for all assessment types Varies Don't know Balance of effects Does the balance between desirable and undesirable effects favour assessing or not assessing these factors? Judgement Research evidence Additional considerations Favours not Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density vere found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. Probably favours assessing Favours assessing Curacy studies. Probably favours assessing Don't know Easter more explanatory and not diagnostic accuracy studies. Probably favours assessing Favours assessing Easter more explanatory and not diagnostic accuracy studies. Pon't know Easter more explanatory and not diagnostic accuracy studies. Easter more explanatory and not diagnostic accuracy studies. Pono't know Easter more explanatory and not diagnostic accuracy studies. Easter more explanatory and not diagnostic accuracy studies. Pon't know Easter more explanatory and not diagno	○ Moderate	hormones and inflammatory biomarkers. Undesirable	
 Trivial Varies Don't know Balance of effects Does the balance between desirable and undesirable effects favour assessing or not assessing these factors? Judgement Research evidence Additional considerations Favours not assessing Probably favours not inclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. Probably favours assessing Probably f	○ Small	effects not reported in studies but are likely to be trivial	
 Varies Don't know Balance of effects Does the balance between desirable and undesirable effects favour assessing or not assessing these factors? Judgement Research evidence Additional considerations Favours not assessing Probably favours assessing Probably favours assessing Probably favours assessing Provide a specific evidence Probably favours assessing Probably favours assessing<	Trivial	for all assessment types	
O Don't know Balance of effects Does the balance between desirable and undesirable effects favour assessing or not assessing these factors? Judgement Research evidence Additional considerations • Favours not Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density • Probably favours not assessing biomarkers, genetic marker, and nerve fibre density • Doos not favour inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. • Probably favours ascessing • Probably favours accuracy studies. • Don't know accuracy studies	• Varies		
Balance of effects Does the balance between desirable and undesirable effects favour assessing or not assessing these factors? Judgement Research evidence Additional considerations • Favours not assessing Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. • Probably favours assessing • Cavours assessing or not assesse the studit of the definition of the definit of the de	 Don't know 		
Balance of effects Does the balance between desirable and undesirable effects favour assessing or not assessing these factors? Judgement Research evidence Additional considerations • Favours not Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density • Probably favours not biomarkers, genetic marker, and nerve fibre density biomarkers, genetic marker, and nerve fibre density • Probably favours not user found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, • Does not favour the studies are more explanatory and not diagnostic accuracy studies. • Fravours assessing orrobably favours accuracy studies. • Fravours assessing orrobably favours • Favours assessing orrobably favours • Probably favours accuracy studies. • Don't know accuracy studies. Resources required accuracy requirements (costs)?			
Does the balance between desirable and undesirable effects favour assessing or not assessing these factors? Judgement Research evidence Additional considerations • Favours not assessing Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density Additional considerations • Probably favours not assessing Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. • Probably favours accuracy studies. accuracy studies. • Favours assessing • Probably favours accuracy studies. • Probably favours • Favours assessing • Probably favours • Favours assessing • Probably favours • Probably favours • Favours assessing • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably favours • Probably fa	Balance of effects		
Judgement Research evidence Additional considerations • Favours not assessing Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, o Does not favour either assessing or not assessing Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. o Probably favours o Does not favour either assessing o Probably favours assessing accuracy studies. o Favours assessing o Favours assessing o Varies o Don't know accuracy studies. b Don't know Esources required How large are the resource requirements (costs)?	Does the balance betwe	an desirable and undesirable effects favour assessing or n	at accessing these factors?
 Favours not assessing Probably favours not assessing Probably favours not assessing Probably favours not		בכוו עכאו מגוב מווע עוועכאו מגוב כווכניג ומיטעו מאפאאווא טו וו	UL ASSESSING LIESE IAULUIS:
assessing biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. assessing biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies. Probably favours assessing Fravours assessing	Judgement	Research evidence	Additional considerations
 Probably favours not assessing Does not favour the studies are more explanatory and not diagnostic accuracy studies. Probably favours assessing Probably favours assessing Probably favours assessing Probably favours assessing Don't know Resources required How large are the resource requirements (costs)? 	Judgement • Favours not	Research evidence Differences in the stress hormone, inflammatory	Additional considerations
assessing Inconclusive evidence for cerebral blood flow. However, b Does not favour the studies are more explanatory and not diagnostic either assessing or accuracy studies. not assessing ecuracy studies. o Probably favours assessing o Favours assessing o Don't know o Don't know ecure requirements (costs)?	Judgement • Favours not assessing	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density	Additional considerations
 Does not favour either assessing or not assessing Probably favours assessing Favours assessing Varies Don't know Resources required Hour and not diagnostic 	Judgement Favours not assessing Probably favours not	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls	Additional considerations
either assessing or not assessing • Probably favours assessing • Favours assessing • Varies • Don't know Resources required How large are the resource requirements (costs)?	Judgement • Favours not assessing • Probably favours not assessing	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls.	Additional considerations
not assessing • Probably favours assessing • Favours assessing • Varies • Don't know Resources required How large are the resource requirements (costs)?	 Judgement Favours not assessing Probably favours not assessing Does not favour 	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic	Additional considerations
 Probably favours assessing Favours assessing Varies Don't know Resources required How large are the resource requirements (costs)? 	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies	Additional considerations
assessing • Favours assessing • Varies • Don't know Resources required How large are the resource requirements (costs)?	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or pot assessing	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations
 Favours assessing Varies Don't know Resources required How large are the resource requirements (costs)? 	 Judgement Favours not assessing Probably favours not assessing Does not favour either assessing or not assessing Probably favours 	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations
 Varies Don't know Resources required How large are the resource requirements (costs)? 	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or not assessing • Probably favours assessing	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations
 Don't know Resources required How large are the resource requirements (costs)? 	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or not assessing • Probably favours assessing • Eavours assessing	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations
Resources required How large are the resource requirements (costs)?	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or not assessing • Probably favours assessing • Favours assessing • Varies	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations
How large are the resource requirements (costs)?	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or not assessing • Probably favours assessing • Favours assessing • Varies • Don't know	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations
	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or not assessing • Probably favours assessing • Favours assessing • Varies • Don't know Resources required	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations
Judgement Research evidence Additional considerations	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or not assessing • Probably favours assessing • Favours assessing • Varies • Don't know Resources required How large are the resource	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations
• Large costs Not reported. Saliva and blood tests are relatively low cost.	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or not assessing • Probably favours assessing • Favours assessing • Varies • Don't know Resources required How large are the resour- Judgement	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations
• Moderate costs PET. SPECT. genetic assessment, and skin biopsy are	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or not assessing • Probably favours assessing • Favours assessing • Varies • Don't know Resources required How large are the resou Judgement • Large costs	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations Additional considerations Additional considerations Saliva and blood tests are relatively low cost.
	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or not assessing • Probably favours assessing • Favours assessing • Varies • Don't know Resources required How large are the resou Judgement • Large costs • Moderate costs	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations Additional considerations Additional considerations Saliva and blood tests are relatively low cost. PET. SPECT. genetic assessment, and skin biopsy are
	Judgement • Favours not assessing • Probably favours not assessing • Does not favour either assessing or not assessing • Probably favours assessing • Favours assessing • Varies • Don't know Resources required How large are the resou Judgement • Large costs • Moderate costs	Research evidence Differences in the stress hormone, inflammatory biomarkers, genetic marker, and nerve fibre density were found in people with WAD versus controls. Inconclusive evidence for cerebral blood flow. However, the studies are more explanatory and not diagnostic accuracy studies.	Additional considerations Additional considerations Additional considerations Saliva and blood tests are relatively low cost. PET, SPECT, genetic assessment, and skin biopsy are

savings • Moderate savings • Large savings • Varies • Don't know Equity		
What would be the Impa	act on health equity?	
Judgement Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	Research evidence No evidence.	Additional considerations Saliva and blood tests are generally available. PET, SPECT, genetic assessment, and skin biopsy are less accessible and costlier, and require specialised equipment and training.
Acceptability Is the assessment meth	od acceptable to key stakeholders?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	No included evidence.	Saliva and blood tests are in routine use in clinical settings. PET and SPECT are in routine use and are likely acceptable. Skin biopsy may not be acceptable for routine assessment.
Feasibility	ad faasible to implement?	
Judgement	Research evidence	Additional considerations

 Probably no Probably yes Yes Varies Don't know PE1, SPEC1, genetic assessment, and skin biopsy are less accessible and costlier and require specialised equipmen and training. 	 No Probably no Probably yes Yes Varies Don't know 	No included evidence.	Saliva and blood tests are in routine use in clinical settings. PET, SPECT, genetic assessment, and skin biopsy are less accessible and costlier and require specialised equipment and training.
---	--	-----------------------	---

A.6.7. Conclusion (advanced medical testing in chronic WAD)

VOTE1: Assessment of stress hormone, inflammatory biomarkers, blood flow, skin biopsy and genetic markers in people with chronic WAD

Are you for or against healthcare professionals assessing the following advanced medical testing in people with chronic WAD: stress hormone and inflammatory biomarkers, blood flow, skin biopsy and genetic markers?

Type of recommendation (stress hormone, inflammatory biomarkers, blood flow, skin biopsy and genetic markers in people with

chronic WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
•	0	0	0	0

Recommendations

The panel recommends not assessing any stress hormone, inflammatory biomarkers, blood flow, skin biopsy, or genetic markers. (Panel vote summary: 11/12 92% strong against; 1/12 8% conditional against)

Justification

- Although most chronic studies showed significance when comparing WAD to control groups, what they assessed, and the technique used varies across all studies.
- Only a few studies assess people with WAD compared to the control group.

• Saliva and blood tests are generally available. However, PET, SPECT, genetic assessment, and skin biopsy are less accessible and costlier and require specialised equipment and training.

A.7. Imaging

What imaging methods assist in: a) classifying the grade of acute whiplash associated disorders; b) determining dysfunction in people with acute or chronic whiplash associated disorders compared with other populations (e.g., healthy, idiopathic neck pain); c) determining the direction of treatment(s); and/or d) evaluating the effectiveness of treatment intervention(s).

A.7.1. Executive summary

What specialised Imaging should healthcare professionals assess in people with acute and chronic whiplash?

Acute whiplash: 6 studies evaluated imaging in people with whiplash compared with controls or other pain conditions. There is 1 study that evaluated symptoms/disability sub-groups. Summary of findings here:

- Morphology Structure changes: 2/3 independent cohorts showed structured changes (e.g., alar and transverse ligament) in people with WAD.
- Morphology Muscle Fat Infiltration (MFI): 1/1 study showed at 3 months higher MFI in cervical neck extensor muscle in people with WAD in the sub-group of moderate/severe disability.
- Morphology Muscle size: 1/1 study showed no difference in the cross-sectional area of neck muscle in people with acute WAD.
- Muscle stiffness: 1/1 study showed increased muscle stiffness in the trapezius in people with acute WAD.

Chronic whiplash: 38 cross-sectional studies evaluated imaging in people with whiplash compared with controls or other pain conditions. Summary of findings here:

- Morphology Structure changes: 2/5 independent cohorts showed structured changes (e.g., alar and transverse ligament) in people with WAD.
- Morphology Structure changes (others): 2/3 independent cohorts of structure changes (e.g., cervical spine meniscoid, jaw injury bone) in people with WAD
- Morphology Muscle Fat Infiltration (MFI): 6/6 independent cohorts showed higher MFI in cervical extensor muscle in people with WAD.
- Morphology Muscle size: 2/5 independent studies showed neck muscle cross-sectional area differs in people with WAD.
- Muscle morphology (Ultrasound): 2/2 independent cohorts of higher neck muscle deformation in people with WAD.
- Metabolites measured by Magnetic resonance spectroscopy (MRS): 1/2 studies showed metabolic changes in the spinal cord in people with WAD.
- Brain structure: 2/3 independent cohorts showed changes in brain structure or connectivity in people with WAD.

- Nerve mobility: 1/2 study showed reduced median nerve sliding in people with WAD.
- Others: 1/1 study reported rotatory CT has a low diagnostic value for chronic WAD.

A.7.2. Acute imaging

Morphology structures changes

Category: Imaging

Sub-category: Morphology structure changes – acute/subacute WAD studies (n= 4 studies)

Table 59: Summary of included studies (acute morphology structure changes)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Main Outcome	Comments	Significant
(Erika Jasmin et al., 2011) Alterations of the Transverse Ligament: An MRI Study Comparing Patients With Acute Whiplash and Matched Control Subjects	To evaluate whether there is an injury to the transverse ligament of the atlas in people with acute whiplash	90 people with acute WAD (50% female)	90 healthy controls	Morphology Cervical structures Transverse ligament MRI	WAD had a minimally thicker transverse ligament than control subjects (only in men was a significant p = 0.03). WAD, signal alteration of the transverse ligament (p = 0.03) was seen on STIR (post- traumatic oedema) and native VIBE sequences. The contrast between the transverse ligament and the CSF on VIBE images was significantly (p = 0.005) lower in WAD than in control subjects. With the application of a	Possible involvement of the transverse ligament in acute WAD	Significant Morphology alterations WAD>C

					contrast agent, the contrast difference between the transverse ligament and CSF WAD and control subjects were less pronounced (p = 0.038).		
(Vetti, Krakenes, Damsgaard, et al., 2011)* Magnetic resonance imaging of the alar and transverse ligaments in acute whiplash- associated disorders 1 and 2: a cross- sectional controlled study	To describe alar- and transverse- ligament magnetic resonance imaging (MRI) high-signal changes in WAD grades 1 and 2 in relation to the severity and mechanics of trauma and to compare them with controls	114 consecutive people with WAD grades I-II (57% female)	157 controls (48% female)	Morphology Cervical structures Alar ligament Transverse ligament MRI	MRI showed grades 2 to 3 alar ligament changes in 40 (35.1%) and grades 2 to 3 transverse ligament changes in 27 (23.7%) WADS. Such changes were related to contemporary head injury (p = 0.041 alar), neck pain (p = 0.042 transverse), and sex (p= 0.033 transverse) but did not differ between WAD and controls (p = 0.433 alar; and 0.254 transverse)	No difference between WAD and controls, indicating that whiplash trauma does not induce high signal changes	NS
(Vetti, Krakenes, Ask, et al., 2011)* Follow-Up MR Imaging of the Alar and Transverse	To explore changes in the signal intensity of the alar and transverse ligaments during the first year after a whiplash injury	91 participants with WAD II-III (58% female)	52 participants with neck pain (>3 months)	Morphology Cervical structures Alar ligament Transverse ligament	Alar and transverse ligament grading were unchanged from the initial to the follow-up. images. The prevalence of grades 2–3 high signal intensity in WAD was thus	Dedicated upper neck MR imaging cannot be recommended as a routine examination in these people.	

Ligaments after Whiplash Injury: A Prospective Controlled Study				MRI	identical in the acute phase and after 12 months. It did not differ from the prevalence in no injured neck pain controls (alar ligaments P= .151; transverse ligament P=- 1.000).		
(Anderson et al., 2012) Are there cervical spine findings at MR imaging that are specific to acute symptomatic whiplash injury? A prospective controlled study with four experienced blinded readers	To compare the magnetic resonance (MR) imaging findings in people with acute whiplash injury with those in matched control subjects.	100 people with acute (<48h) WAD (53% female)	100 healthy controls (53% female)	Morphology Cervical structures Vertebral body, muscle strain or tear, perimuscular fluid MRI	MR imaging findings significantly associated with whiplash injuries were occult fracture (P < .01), bone marrow contusion of the vertebral body (P = .01), muscle strain (P <.01) or tear (P < .01), and the presence of perimuscular fluid (P <.01). While 10 findings thought to be specific for whiplash trauma were significantly (P <.01) more frequent in patients (507 observations), they were also regularly found in healthy control subjects (237 observations).	MR imaging at 1.5 T reveals only limited evidence of specific changes to the cervical spine and the surrounding tissues in people with acute symptomatic whiplash injury compared with healthy control subjects.	Significant WAD>contr ol structural observation s

**2 papers reported the same cohort – Vetti, Krakenes, Damsgaard, et al., 2011, Vetti, Krakenes, Ask, et al., 2011

Morphology muscle fat infiltration

Category: Imaging

Sub-category: Morphology Muscle Fat Infiltration (MFI) - acute/subacute WAD studies (n=1 study)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Main Outcome	Comments	Significant
(Elliott et al.,	To 1)	44 people with		Muscle Fat	There was no	MFI in the cervical	Significant
2011)	temporal	classified on		minutation	fat between the	following whiplash	Differences
The Temporal	development	NDI		Cervical	groups at 4 weeks	injury and suggests	in subgroup
Development	of MFI	(74% female)		extensor	post-injury. By 3	the possibility for the	
of Fatty	following			muscles	months, those with	occurrence of a more	
Inflitrates in	2) investigate	NDI SCORES AT 6-		MRI	moderate/severe	subsequent PTSD in	
Muscles	differences in	injury as either			higher levels of	people with persistent	
Following	MFI between	recovered			muscle fat (p<0.01)	symptoms.	
Whiplash	those who	(NDI,10%),			Muscle fat may		
Injury: An	recover and	mild (NDI 10–			develop between 4		
Association	those who	28%)			and 12 weeks in		
Posttraumati	nersistent	on moderate/sever			moderate-severe		
c Stress	symptoms at	e (NDI ≥30%).			pain and disability		
	six months	. ,			. , , , , , , , , , , , , , , , , , , ,		
	post injury						

Table 60: Summary of included studies (acute morphology muscle fat infiltration)

Morphology muscle size

Category: Imaging

Sub-category: Morphology Muscle Size - acute WAD studies (n=1 study)

Table 61: Summary of included studies (acute morphology muscle size)

Author Year Aim WAD P	ulation Comparison Population	Main Outcome assessed	Main Outcome	Comments	Significan t
-----------------------	----------------------------------	-----------------------------	--------------	----------	-----------------

(Ulbrich et al., 2011)	To quantitatively compare the	38 consecutive people with acute WAD	38 controls (50% female)	Muscle recruitment	There were no significant differences between	There was no difference in the cross- sectional area of neck	NS
Cervical	muscle cross-	(50% female)		Cervical	people with acute	muscles	
muscle area	sectional areas			muscle area	WAD and controls		
measurement	(CSAs) of the			Cross-	for all CSAs		
s in acute	cervical			sectional			
whiplash	muscles in			areas (CSA)			
patients and	people with						
controls	symptomatic			MRI			
	acute whiplash						
	versus healthy						
	controls						

Muscle stiffness

Category: Imaging

Sub-category: Muscle Stiffness - acute/subacute WAD studies (n=1 study)

Table 62: Summary of included studies (acute muscle stiffness)

Author Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Main Outcome	Comments	Significan t
(Aljinovic et	To investigate	75 people with	75 healthy	Muscle	Increased muscle	People measuring	Significant
al., 2020)	the difference	acute (<3mo)	controls	stiffness	stiffness in trapezius	below 76 kPa of muscle	
	in neck muscle	WAD	(55% female)		muscle bilaterally in	stiffness in the	Stiffness
Can	stiffness using	(57% female)		Shear wave	the whiplash group	trapezius muscle might	WAD>C
measuring	shear wave			elastography	when compared to	have no whiplash injury.	
passive neck	ultrasound			(SWE)	the control group (p<		
muscle	elastography				0.001). People with		
stiffness in	between			Ultrasound	less than 76 kPa of		
whiplash	subjects who			(US)	muscle stiffness in		
injury	suffered an				trapezius muscle are		
patients help	uncomplicated				unlikely to belong to		
detect false	whiplash injury				WAD group		
whiplash	and a control				(sensitivity 90% for		
claims?	group				right and 97% for		

		left trapezius muscle, specificity 72% and 73%, respectively).	
--	--	---	--

A.7.3. Acute imaging evidence summary

Table 63: Summary of evidence for included studies in acute imaging

Sub-	Studies	Population	Measurement	Conclusion	Evidence
Morphology Structure changes (Independent cohorts n=3)	(Erika Jasmin et al., 2011)	90 acute WAD 90 controls	Cervical structures transverse ligament - MRI	Possible involvement of the transverse ligament in acute WAD.	2- Sig 1 - NS
	(Vetti, Krakenes, Damsgaard, et al., 2011)*	114 WAD grades I-II 157 controls	Cervical structures Alar and transverse ligament - MRI	No difference between WAD and controls, indicating that whiplash trauma does not induce high signal changes	
	(Vetti, Krakenes, Ask, et al., 2011)*	91 WAD grades I-II 52 neck pain	Cervical structures Alar and transverse ligament - MRI	The prevalence of high signal WAD 2-3 similar in acute and at 12 months and did not differ from the prevalence of noninjury neck pain controls	
	(Anderson et al., 2012)	100 WAD 100 controls	Cervical structures Bone and muscle - MRI	Limited evidence of specific changes to the cervical spine and the surrounding tissues in people with acute compared to control.	
Morphology Muscle Fat Infiltration (Independent cohort n=1)	(Elliott et al., 2011)**	44 people with acute WAD were subclassified as recovered, mild and moderate/ severe based on NDI.	Cervical extensor muscles - MRI	People with WAD in the moderate/severe disability group at 3 months showed an increased in MFI in cervical extensor muscles	1 - Sig
Morphology Muscle size	(Ulbrich et al., 2011)	38 WAD 38 controls	Cervical muscle area	There was no difference in the cross-sectional area of neck muscles	1 - NS

(Independent cohort n=1)		Cross-sectional area -MRI		
Muscle stiffness	(Aljinovic et al., 2020)	Trapezius muscle Shear wave elastography- US	People with less than 76 kPa of muscle stiffness in trapezius muscle are unlikely to belong in the WAD group	1 - Sig
(Independent cohorts n=1)				

*2 papers reported same cohort – Vetti, Krakenes, Damsgaard, et al., 2011, and Vetti, Krakenes, Ask, et al., 2011; ** Subgroups

A.7.4. Chronic imaging

Morphology structure changes

Category: Imaging

Sub-category: Morphology Structure changes - Chronic and mixed WAD studies (>3mon) (n=8 studies)

Table 64: Summary of included studies (chronic morphology structure changes)

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Main Outcome	Comments	Significant
(Dullerud et al., 2010) Magnetic resonance imaging of ligaments and membranes in the craniocervical junction in whiplash- associated injury and in healthy control subjects	Assess MRI signal alterations of the ligaments and loss of integrity of the membranes in the craniocervical junction in people with WAD and compare them with uninjured control subjects.	28 participants with WAD (60% female)	27 uninjured controls subjects (59% female)	Morphology Cervical structures Alar ligament Transverse ligament Craniocervical membranes MRI	No statistically significant difference between control subjects and people with WAD was revealed for any of the structures assessed (p <0.10).	Lack of significant differences between groups. It is not recommended that MRI with the current technique and classification system be used in the routine workup of people with WAD.	NS

(Kaale et al., 2005a)* Head position and impact direction in whiplash injuries: associations with MRI verified lesions of ligaments and membranes in the upper cervical spine	To compare MRI abnormalities with accident- related factors	92 people with chronic WAD (64% female)	30 healthy controls (63% female)	Morphology Cervical structures Alar ligament Transverse ligament Craniocervical membranes MRI	People with WAD had more high- grade lesions than controls (p<0.05).	People with WAD had more high-grade lesions than controls	Significant Damage WAD>C
(Kaale et al., 2005b)* Whiplash Associated Disorders impairment rating: neck disability index score according to the severity of MRI findings of ligaments and membranes in the upper cervical spine	To relate MRI findings with pain and disability ratings from the NDI	92 people with chronic WAD (64% female)	30 healthy controls (63% female)	Morphology Cervical structures Alar ligament Transverse ligament Craniocervical membranes MRI	The NDI score significantly increased with signs on MRI (p=0.002). An increase in NDI score with increasing number of structures (ligaments, membranes) with high-grade MRI changes was significant (p=0.003).	High-resolution MRI can show structural damage correlated to NDI score.	
(Krakenes et al., 2003)*	To analyse and classify structural	92 people with chronic WAD (64% female)	30 healthy controls (63% female)	Morphology	22 out of 32 ligaments in control group (73%) were	A higher proportion of transverse ligament	

MR analyses of the transverse ligament in the late stage of whiplash injury	changes in transverse ligaments in chronic WAD using high- resolution MRI			Cervical structures Alar ligament Transverse ligament MRI	classified as normal, compared with 32 of 9the 2 in WAD group (36%).	damage in WAD group.	
(Knackstedt et al., 2012) Magnetic resonance imaging of craniovertebral structures: clinical significance in cervicogenic headaches	To investigate the relevance of morphological changes in the main stabilising structures of the craniocervical junction in persons with cervicogenic headache (CEH)	22 people with chronic WAD (59% female)	46 people with chronic cervicogenic headache (CEH) (78% female) 19 people with chronic migraine (89% female)	Morphology Cervical structures Alar ligament Transverse ligament MRI	MRI of the craniovertebral and the cervical junctions, the alar and transverse ligaments disclosed no significant differences between those with CEH, WLaH and or migraine.	Morphological MRI changes in craniovertebral ligaments showed similar frequency in people with CEH compared. to those with WLaH and/or migraine	NS
(Lindgren et al., 2009) Dynamic kine magnetic resonance imaging in whiplash patients and in age- and sex- matched controls	To compare the findings and motion patterns in the upper cervical spine, 25 people with whiplash trauma with longstanding pain, limb symptoms and loss of balance, indicating a problem at the	25 participants with WAD (75% female)	25 control participants (75% female)	Morphology Cervical structures Alar ligament Transverse ligament MRI	The signal from the alar ligaments was abnormal in 92% of the people with WAD and in 24% of the control subjects (P<0.0001). Abnormal movements at the level of C1-C2 were more common in people with WAD than in controls (56% versus 20%, P=0.028).	People with WAD with longstanding symptoms had both more abnormal signals from the alar ligaments and more abnormal movements in the dMRI at the CO- C2 level than control	Significant Damage WAD>C

	level of CO-C2, as well as matched healthy controls						
(Myran et al., 2008)** Magnetic resonance imaging assessment of the alar ligaments in whiplash injuries: a case- control study	Assessing signal intensity areas in the alar ligaments.	59 participants with WAD I-II (>6 months). (59% female)	57 with chronic nontraumatic neck pain (>6 months) (66% female) 57symptomatic subjects (49% female)	Morphology Cervical structures Alar ligament MRI	Alar ligament changes Grades 0 to 3 were seen in all 3 diagnostic groups. Areas of high signal intensity (Grade 2–3) were found in at least one alar ligament in 49% of the people with WAD Grade I– II, in 33% of the chronic neck pain group and in 40% of the control group (X ² , P = 0.22).	No significant difference in alar ligament signal intensity changes on MRI between WAD, people with chronic neck pain and subjects without neck pain or previous neck trauma	NS
(Myran et al., 2011) ** Clinical Characteristics, Pain, and Disability in Relation to Alar Ligament MRI Findings	To evaluate the association between degree of signal changes in the alar ligaments on MRI with respect to pain and disability.	59 participants with WAD I-II (>6 months) (59% female)	57 with chronic nontraumatic neck pain (>6 months) (66% female) 57asymptomatic subjects (49% female)	Morphology Cervical structures Alar ligament MRI	No significant correlation between the alar ligament changes and measures for pain and disability	The diagnostic value and the clinical relevance of MR- detectable areas of high intensity in the alar ligaments remain questionable.	

*3 papers reported same cohort Kaale 2005a, Kaale 2005b, Krakenes 2003; **2 papers reported the same cohort Myran 2008, Myran 2011

Morphology structure changes - others

Category: Imaging

Sub-category: Morphology Structure changes – Others -Chronic and mixed WAD studies (>3mon) (n=3 studies)

Table 65: Summary of included studies (chronic morphology structure changes - others)

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Farrell et al., 2016) Morphology of cervical spine meniscoid in individuals with chronic whiplash- associated disorder: A case- control study	To investigate cervical spine meniscoid morphology in individuals with chronic WAD.	20 people with chronic (>3mo) WAD (50% female)	20 healthy controls (50% female)	Morphology Cervical Meniscoid morphology MRI	Lateral atlantoaxial joints, median meniscoid length was greater in the control group (ventral, 6.07 mm; dorsal, 7.24 mm) than the WAD group (ventral, 5.01 mm; P = .06; and dorsal, 6.48 mm; P<.01). At the dorsal aspect of zygapophyseal joints, meniscoid were more frequently fibrous in the chronic WAD group.	Cervical spine meniscoid display morphological differences in a chronic WAD compared to age- and sex-matched controls.	Significant Damage WAD>C
(Grushka et al., 2007) Radiographic and clinical features of temporomandibular dysfunction in patients following indirect trauma: A retrospective study	To determine clinical and radiographic differences between post- MVA and people with nontraumatic temporomandibular dysfunction (TMD)	54 subjects with WAD (80% female)	82 non- trauma TMD (84% female)	Morphology TMD disc changes MRI	The MRI and bone scan data demonstrated significant differences between the 2 groups in a number of features. Most notably, MRI findings demonstrated a significantly higher incidence of disk changes in the control group	Post-MVA patients demonstrate no evidence of jaw injury by bone scan and MRI study.	Significant (against) Disk changes WAD <c< td=""></c<>

					compared with the post-MVA group.		
(Lee et al., 2018) Magnetic resonance imaging-based prediction of the relationship between whiplash injury and temporomandibular disorders	Evaluate whether the initial clinical findings in people with temporomandibular disorders (TMD) with whiplash injury are correlated with their magnetic resonance imaging	76 people with WAD and TMD (wTMD) (71% female)	58 people with post- traumatic TMD (43% female) 85 people with idiopathic TMD (67 % female)	Morphology TMD disc changes MRI	post-MVA group. The lateral pterygoid muscle (LPM) atrophy was most seen in the wTMD group, as was disk deformity.	WAD may lead to TMD via different mechanisms from other macrotraumas.	Significant Disk changes WAD >C
	(MRI) characteristics.						

Morphology muscle fat infiltration

Category: Imaging

Sub-category: Morphology Muscle Fat Infiltration - Chronic and mixed WAD studies (>3mon) (n=8 studies)

Table 66: Summary of included studies (chronic morphology muscle fat infiltration)

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Abbott et al.,	To quantify the	5 people with	5 people who	Muscle Fat	Muscle fat	Preliminary evidence of	Significant
2015)	magnitude and	chronic	have recovered	Infiltration	infiltration is more	unique patterns of MFI	
	distribution of	(60% female)	from WAD)		concentrated in all	distribution within the	MFI
The	muscle fat		(60% female)	Neck	participants' medial	deep extensor muscles	WAD> C
geography of	infiltration			muscles	portion of the	of individuals with	
fatty	(MFI) within		5 healthy		muscles. However,	chronic WAD,	
infiltrates	the cervical		controls	MRI	the magnitude of	individuals who have	
within the	multifidus and		(60% female)		MFI in the medial	recovered from a	
cervical	semispinalis				quartiles (1 and 2) is	whiplash injury, and	
multifidus	cervicis				greatest in the	healthy controls	
and	muscles in				chronic WAD group,		
semispinalis	participants						

cervicis in individuals with chronic whiplash- associated disorders	with chronic WAD compared to those who have fully recovered from a whiplash injury and healthy controls.						
(Abbott et al., 2018) The qualitative grading of muscle fat infiltration in whiplash using fat and water magnetic resonance imaging	To establish a qualitative MRI measure for MFI and evaluate its ability to differentiate between individuals with severe whiplash- associated disorder (WAD), mild or moderate WAD, and healthy controls	31 people with chronic (>6mo) WAD (55% female)	31 healthy controls (55% female)	Muscle Fat Infiltration Neck muscles MRI	Significant differences (p<0.05) in regional MFI were particularly notable between the severe WAD group and healthy controls.	Increased MFI within the cervical multifidus muscles of individuals with persistent WAD compared to those with milder symptoms and healthy controls.	Significant MFI WAD> C
(Elliott et al., 2006)* Fatty infiltration in the cervical extensor muscles in persistent whiplash	To quantitatively compare the presence of fatty infiltrate in the cervical extensor muscles in people with chronic WAD II	79 people with chronic WAD (>3mo) (100% female)	34 healthy controls (100% female)	Muscle Fat Infiltration Neck muscles MRI	WAD subjects had significantly larger amounts of fatty infiltrate for all cervical extensor muscles compared with controls (all p<0.0001).	Greater fatty deposits in cervical extensor muscles of people with chronic WAD.	Significant MFI WAD> C
associated disorders	and healthy controls						
--	--	--	---	---	--	---	-----------------------------
(Elliott et al., 2010)* Magnetic Resonance Imaging Findings of Fatty Infiltrate in the Cervical Flexors in Chronic Whiplash	To quantify physical structure changes MFI and CSA of the anterior cervical muscles (longus colli, longus capitis, and sternocleidom astoid [SCM] muscles) in people with chronic WAD compared to healthy controls	78 people with chronic WAD (>3mo) (100% female)	31 healthy controls (100% female)	Muscle Fat Infiltration Neck muscles MRI	The WAD subjects had significantly larger MFI and CSA for the anterior muscles than healthy control subjects (all P < 0.0001). In addition, the amount of MFI varied by both cervical level and muscle, with the longus capitis/colli having the largest amount of fatty infiltrates at the C2– C3 level (P = 0.0001).	Greater MFI and CSA in the anterior neck muscles, especially in the deeper longus capitis/colli muscles, in subjects with chronic WAD when compared to healthy controls	
(Elliott, Sterling, et al., 2008) Fatty infiltrate in the cervical extensor muscles is not a feature	To Investigate the presence of fatty infiltrate in the cervical extensor musculature in people with insidious onset neck pain to	79 WAD subjects (100% female)	23 insidious- onset neck pain (<3 months) (100% female)	Muscle Fat Infiltration Cervical extensor Decision tree to distinguish groups	Differences in the fat indices of all muscles in WAD participants demonstrated significantly higher amounts of total fatty infiltration when compared with the insidious-onset	Fatty infiltrates in the cervical extensor musculature, and widespread hyperalgesia have been identified in people with chronic WAD. Classification tree	Significant MFI WAD>C

of chronic, insidious- onset neck pain	better understand the possible pathophysiolo gy underlying such changes in chronic WAD				neck pain participants (p < 0.001). The analysis revealed that the strongest features distinguishing the two groups were (1) the fat index scores and (2) CPT	determined that the insidious-neck pain group could be clearly distinguished from the WAD group based on average muscular fat and cold pain thresholds.	
(Karlsson et al., 2016)** An Investigation of Fat Infiltration of the Multifidus Muscle in Patients With Severe Neck Symptoms Associated With Chronic Whiplash- Associated Disorder	To develop a method using water/fat MRI to investigate fat infiltration and cross- sectional area of multifidus muscle in individuals with WAD compared to healthy controls	31 people with chronic WAD (>6mo)	31 healthy controls	Muscle Fat Infiltration Multifidus Muscle MRI	WAD with severe disability had 38% greater muscular fat infiltration compared to healthy controls (P = .03) and 45% greater fat infiltration compared to those with mild to moderate disability related to WAD (P=0.02). There were no significant differences between those with mild to moderate disability and healthy controls. No significant differences between groups were found for multifidus cross- sectional area.	Participants with severe disability after a whiplash injury had higher fat infiltration in the multifidus compared to controls and to those with mild/moderate disability secondary to WAD.	Significant MFI WAD severe disability> C
(Karlsson et al., 2019)** The relation between	To investigate the relationship between fat infiltration in	31 people with chronic WAD (>6mo) (55% female)	31 healthy controls (55% female)	Muscle Fat Infiltration Cervical multifidi and	No significant differences (p = 0.11) in the lower extremities MFI	WAD has a local effect on muscle fat infiltration rather than a generalized one.	

local and distal muscle fat infiltration in chronic whiplash using magnetic resonance imaging	the cervical multifidi and fat infiltration measured in the lower extremities to move further into understanding the complex signs and symptoms arising from a whiplash trauma			lower extremities MRI	between the groups were found.		
(Valera- Calero et al., 2021) Echo- intensity, fatty infiltration, and morphology ultrasound imaging assessment in healthy and whiplash associated disorders populations: an observational study	Echo-intensity, fatty infiltration, and morphology ultrasound imaging assessment in healthy and whiplash associated disorders populations: an observational study	41 people with chronic (>6mo) WAD (70.8% female)	39 healthy controls (44% female)	Muscle Fat Infiltration Cervical multifidus and short rotators Ultrasound (US) imaging	Between-groups differences in both cervical multifidus (CM) and short rotators (SR), were observed for fatty infiltration percentage (mean: 4.9%; P<0.001; mean: 3.5%; P<0.05, respectively) and mean EI (mean: 4.1; P<0.001; mean: 3.2; P<0.05, respectively): people with WAD exhibited higher fatty infiltration than controls.	US assessment of deep cervical extensors revealed greater fatty infiltration, but no differences in muscle morphology, between people with WAD and pain-free controls.	Significant MFI WAD>C

*2 studies Elliott 2006 and Elliott 2010 same cohort ** 2 studies Karlsson 2016 and Karlsson 2019 same cohort

Morphology muscle size

Category: Imaging

Sub-category: Morphology Muscle Size - Chronic and mixed WAD studies (>3mon) (n=6 studies)

Table 67: Summary of included studies (chronic morphology muscle size)

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Cagnie et al., 2010) Use of muscle functional magnetic resonance imaging to compare cervical flexor activity between patients with whiplash- associated disorders and people who are healthy	Compare the recruitment pattern of deep and superficial neck flexors between p with WAD and the control group using muscle functional magnetic resonance imaging (mfMRI)	16 people with WAD with ≥6 months (69% female)	19 healthy controls (48% female)	Muscle recruitment Cervical flexor mfMRI	When comparing the WAD and control groups, the results lacked significance, although the people with WAD demonstrated a trend for lower T2 shifts in both the longus colli (Lco), longus capitis (Lca), (p<.060)	Failed to demonstrate a changed activity pattern in the WAD group compared with the control group	NS
(Elliott, Jull, et al., 2008)* MRI study of the cross- sectional area for the cervical	To measure the cross- sectional area (CSA) of cervical extensor muscles, (2) determine	79 subjects with WAD (100% female)	34 healthy controls (100% female)	Muscle recruitment Cervical extensor Cross sectional area (CSA)	The cervical multifidus muscle in the WAD group had a significantly larger rCSA at all spinal levels and in contrast, there were variable differences	WAD group show quantifiable alterations in rCSA of the cervical paraspinal musculature that differ significantly from subjects with no history of neck pain.	Significant rCSA WAD>C

extensor musculature in patients with persistent whiplash	whether there was a difference in CSA between WAD and healthy control			MRI	in rCSA measures across levels in the intermediate and superficial extensor muscles when compared to the		
associated disorders (Elliott et al., 2014)* Differential changes in muscle composition exist in traumatic and nontraumatic neck pain	To clarify relative constituents of viable muscle in 2- dimensional cross-sectional area (CSA) measures of ventral and dorsal cervical muscles in people with chronic WAD idiopathic neck pain, and healthy controls.	79 people with chronic WAD (>3mo) (100% female)	23 people with chronic idiopathic neck pain (>3mo) (100% female) 34 healthy controls (100% female)	Muscle recruitment Neck muscle -CSA MRI	healthy controls (Po<0.0001). Without fat removed, relative CSA of 7 of 14 muscle regions in the participants with chronic WAD was larger, 3 of 14 smaller and 4 of 14 similar to healthy individuals. When T1- weighted signal representing the lipid content of these muscles was removed, 8 of 14 relative muscle CSA in people with whiplash were similar, 5 of 14 were smaller and only 1 of 14 was larger than those observed in healthy controls. Removal of fat from the relative CSA measurement did not alter findings between participants with idiopathic neck pain and healthy controls.	Generalized cervical muscle hypertrophy in people with chronic WAD is likely due to heightened levels of fatty infiltrate within the muscles.	

(Matsumoto et al., 2010)** Prospective ten-year follow-up study comparing patients with whiplash- associated disorders and asymptomati c subjects using magnetic resonance imaging	To clarify long- term impact of whiplash injury on a person's symptoms and on magnetic resonance imaging (MRI) findings of the cervical spine	133 people with WAD (53% female)	223 control subjects (45% female)	Muscle recruitment Cervical Spine-CSA MRI	There was no difference in the change in CSA over time between the symptomatic and asymptomatic people.	Although some people with WAD are more likely to suffer from long-lasting neck pain, MRI findings cannot explain the symptoms	NS
(Matsumoto et al., 2012)** Cross- sectional area of the posterior extensor muscles of the cervical spine in whiplash injury patients versus healthy volunteers 10-year follow-up MR study	To elucidate the changes in the posterior extensor muscles 10 years after whiplash injury.	23 people with WAD (43% female)	60 control subjects (40% female)	Muscle recruitment Posterior extensor muscles - CSA MRI	The mean change in CSA over time was 361.8 ± 804.9 mm2 in the people with whiplash and 218.1 ± 520.7 mm2 in the controls (p = 0.34). There was no the difference in the change in CSA over time between the symptomatic and asymptomatic people.	There was no significant difference in the change in CSA between people with whiplash and healthy volunteers after a 10- year follow-up period.	

(Van Looveren et al., 2021) Changes in Muscle Morphology in Female Chronic Neck Pain Patients Using Magnetic Resonance Imaging	Understanding changes in muscle morphology in people with chronic idiopathic neck pain (CINP) and chronic WAD (CWAD)	37 people with chronic WAD (100% female)	45 people with chronic (>3mo) idiopathic neck pain 35 healthy controls (HC)	Muscle recruitment Neck muscle (CSA) MRI	A significantly larger cross-sectional area was found in some extensor (levator scapulae, semispinalis capitis, trapezius) and flexor (longus colli, longus capitis, sternocleidomastoid) muscles in the HC group compared to the CINP and/or CWAD group.	Suggest changes in muscle morphology in both neck pain cohorts.	Significant rCSA WAD <c< td=""></c<>

*2 studies Elliott 2008 and Elliott 2013 same cohort.

** 2 studies Matsumoto 2010 and Matsumoto 2012 same cohort

Muscle morphology ultrasound

Category: Imaging

Sub-category: Muscle morphology (Ultrasound) - Chronic and mixed WAD studies (>3mon) (n=3 studies)

Table 68: Summary of included studies (chr	ronic muscle morphology ultrasound)
--	-------------------------------------

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Peterson et	To compare	40 people with	40 healthy	Muscle	The WAD group had	We found that	Significant
al., 2016)	mechanical	chronic WAD	controls	Morphology	higher deformation	individuals with WAD	
	neck muscle	(>6mo)	(70% female)		rates in the	have higher	Deformation
Changes in	function,	(70% female)		Neck muscle	multifidus muscle	deformation rates in	WAD>C
Dorsal Neck	deformation				during the first (p <	the multifidus muscle	
Muscle	and			Ultrasound	0.04) and 10th (only	compared	
Function in	deformation			(US)	women, p < 0.01) arm	with healthy controls.	
Individuals	rate in five				elevations		

with Chronic Whiplash- Associated Disorders: A Real-Time Ultrasound Case-Control Study	dorsal neck muscles in individuals with chronic WAD versus healthy controls during repetitive arm elevation				compared with the control group.		
(Peolsson et al., 2016) Multivariate analysis of ultrasound- recorded dorsal strain sequences: Investigation of dynamic neck extensions in women with chronic whiplash associated disorders	To compare the strain of dorsal multilayer neck muscles in individuals with chronic WAD and matched healthy controls, during a standardised dynamic resisted neck extension.	9 people with chronic WAD (100% female)	9 healthy controls (100% female)	Muscle Morphology Neck muscle US During neck extensions	The WAD group showed more shortening during the neck extension phase in the trapezius muscle and during both the neck extension and the return to neutral phase in the multifidus muscle < 0.01.	An altered mechanical strain of the trapezius and multifidus muscles in individuals with WAD, compared with healthy controls when performing a standardised low- loaded neck extension.	
(Rahnama et al., 2018) Alterations in the Mechanical Response of Deep Dorsal Neck Muscles in Individuals Experiencing	To investigate and compare the mechanical responses of dorsal neck muscles in individuals with WAD versus healthy individuals.	36 people with chronic WAD (72% female)	36 healthy controls (72% female)	Deformation Neck muscle US	WAD showed higher deformations of the semispinalis cervicis (P = 0.02) and multifidus (P = 0.002) muscles and higher deformation rates (P = 0.03 and 0.0001, respectively).	Mechanical responses of the deep dorsal neck muscles differ between individuals with WAD and healthy controls, possibly reflecting that these muscles use altered strategies while performing a neck extension task.	Significant Deformation WAD>C

Whiplash- Associated Disorders Compared to				
Healthy Controls: An Ultrasound Study				

Metabolites

Category: Imaging

Sub-category: Metabolites – measured by Magnetic Resonance Spectroscopy (MRS) Chronic and mixed WAD studies (>3mon) (n=3 studies)

Table 69: Summary of included studies (chronic metabolites)

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Elliott et al., 2012) Spinal cord metabolism and muscle water diffusion in whiplash	To quantify spinal cord metabolites and neck muscle fast and slow water diffusion in a small sample of people with chronic whiplash and healthy controls	5 people with chronic (>6mo) whiplash;	7 controls	Metabolites N- cetylaspartat e/creatine ratios Magnetic resonance spectroscopy (MRS)	Significant reductions in N- acetylaspartate/crea tine ratios were found in subjects with chronic whiplash compared to healthy controls (P= 0.02). Significantly higher fast apparent diffusion coefficients (ADCs) were found in chronic whiplash when cocompared toy controls (P= 0.01). There was no difference in slow	Changes in cord biochemistry in tandem with altered water diffusion in the cervical multifidus in chronic whiplash.	Significant WAD>control spinal cord dysfunction

					ADCs between the two groups ($P=0.3$)		
(Farrell et al., 2020)* Spinal cord injury is not a feature of chronic whiplash- associated disorder: a magnetic resonance spectroscopy study	Injury to the cervical spinal cord has been suggested as a mechanism that may underpin chronic whiplash- associated disorder (WAD). This study aimed to assess metabolite concentrations indicative of neuronal injury or pathology in the cervical cord in people with chronic WAD	41 people with chronic WAD (61% female)	14 healthy controls (64% female)	Metabolites N- acetylaspart ate (NAA), creatine (Cr) and choline (Cho) MRS	There were no differences between the WAD and control groups for NAA/Cr, NAA/Cho, or Cr/Cho.	Major metabolic changes not being present in chronic WAD	NS
(Farrell et al., 2021)* Magnetic Resonance Spectroscop y Assessment of Brain Metabolite Concentratio ns in Individuals With Chronic	Investigated metabolite profiles of brain regions in people with chronic WAD compared with controls	38 people with chronic (>3mo) WAD (61% female)	16 healthy controls (69% female)	Metabolites Anterior cingulate cortex (ACC), primary motor cortex (1MC), and somatosenso ry cortex (SSC), ratios of metabolite concentratio ns	No group differences were observed for NAA:Cr, NAA: Cho, Cr:Cho, Glx:NAA, Glx:Cr, Glx:Cho, Ins:NAA, Ins:Cr, Ins: Cho or Ins:Glx for left or right ACC, 1MC, or SSC following correction for multiple comparisons.	Data do not reflect group differences in metabolite ratios at the ACC, 1MC, or SSC between people with chronic WAD compared with controls	

Whiplash- associated Disorder: A Cross- sectional Study		were calculated for N- acetylaspart ate (NAA), creatine (Cr), choline(Cho), myo-inositol (Ins), and glutamate/gl utamine (Glx).		
		MRS		

*2 papers reported same cohort Farrell 2021 and Farrell 2020

Brain

Category: Imaging

Sub-category: Brain - Chronic and mixed WAD studies (>3mon) (n=4 studies)

Table 70: Summary of included studies (chronic brain)

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Sturzenegger et al., 2008) MRI-based brain volumetry in chronic whiplash patients: no evidence for	To investigate whether traumatic brain injury can be identified using a magnetic resonance (MR)- based quantitative analysis of normalized deformation (VBR) in people with	21 participants with WAD I-II (71% female)	18 healthy controls (72% female)	Brain volumetry MRI	The values of normalized VBR did not differ in people with whiplash when compared with that in healthy controls (F = 0.216, P = 0.645).	Does not support the loss of brain tissue following whiplash injury as measured by VBR	NS

traumatic brain injury	chronic whiplash with subjective cognitive impairment that cannot be objectively confirmed by neuropsychological						
(Coppleters et al., 2021)* Enhanced amygdala- frontal operculum functional connectivity during rest in women with chronic neck pain: Associations with impaired conditioned pain modulation	To examine resting-state functional connectivity alterations and associations with pain outcomes, self-reported central sensitization- related symptoms, and quantitative sensory testing (QST) measures in people with chronic non-traumatic (idiopathic/CINP) neck pain and chronic traumatic (whiplash associated/CWAD) neck pain compared to pain- free controls	37 people with chronic WAD (100% female)	38 people with chronic idiopathic neck pain (100% female) 32 healthy controls (100% female)	Amygdala- frontal operculum functional connectivity MRI	Left amygdala functional coupling during rest with the left frontal operculum in women with CINP and CWAD compared to controls. This increased resting- state functional connectivity was associated with more self-reported symptoms related to central sensitization and decreased efficacy of conditioned pain modulation. Furthermore, enhanced connectivity between the left amygdala and left frontal orbital cortex, and between the left pallidum and the left frontal operculum was	CWAD showed the most pronounced alterations in resting- state functional connectivity, encompassing subcortical limbic (amygdala) and basal ganglia (pallidum), and ventral frontal regions (frontal operculum, orbitofrontal cortex) when compared to CINP and controls.	Significant WAD>control Brain alterations

					observed only in		
					compared to		
					healthy controls.		
(Coppieters et	To examine	37 people with	37 people	Cortical	Cortical thinning in	Results emphasize	
al., 2018)*	alterations in	chronic WAD	with chronic	thickness	the left precuneus	the role of structural	
	cortical thickness	(100% female)	Idiopathic	and white	was revealed in	brain alterations in	
Differences in	and white matter		neck pain	matter	CWAD compared	women with CWAD	
white matter	(WIM) structure,		(100% temale)	МП	With people with	compared with CINP	
structure and	of brain		31 hoalthy	IVIRI	docrossod		
thickness	microhemorrhages		controls		fractional		
hetween	in a group		(100% female)		anisotropy and		
patients with	encountering				increased mean		
traumatic and	chronic neck pain				and radial		
idiopathic	of traumatic origin				diffusivity values		
chronic neck	when compared				could be observed		
pain:	with a group				in the left cingulum		
Associations	characterized by				hippocampus and		
with cognition	nontraumatic				tapetum in CWAD		
and pain	chronic neck pain				compared with		
modulation?	and healthy				CINP and in the left		
	controls.				tapetum in people		
					with CWAD		
(Connieters et	To examine	31 neonle with	34 neonle	Regional	Regional GMV of	Evidence for	
(00ppleters et al., 2017)*	regional GMV	chronic WAD	with chronic	Grev Matter	the right lateral	decreased GMV in	
	alterations in	(100% female)	idiopathic	Volume	orbitofrontal	cortical regions	
Decreased	people with CWAD	(· · · · · · · · · · · · · · · · · · ·	neck pain		cortex, left	associated with	
Regional Grey	compared to		(100% female)	MRI	supramarginal	pain and cognitive	
Matter	people with non-				cortex, and left	processing in women	
Volume in	traumatic chronic		28 healthy		posterior cingulate	with CWAD	
Women with	idiopathic neck		controls		cortex was	compared to women	
Chronic	pain (CINP), who		(100% female)		decreased in	with CINP and	
Whiplash-	normally do not				people with CWAD	healthy women	
Associated	snow CS at a group				compared to		
Disorders:	level, and nealthy				-0.022, $D = 0.012$, D		
Relationships	controls.				– 0.023; P = 0.012; P		1

with Cognitive Deficits and Disturbed Pain Processing			= 0.047, respectively). Additionally, GMV of the right superior parietal cortex and left	
			posterior cingulate	
			cortex was	
			decreased in	
			people with CWAD	
			compared to	
			people with CINP	
			(P = 0.008; P =	
			0.035,	
			respectively).	

3 papers reported same cohort Coppieters 2021, Coppieters 2018, Coppieters 2017*

Nerve mobility

Category: Imaging

Sub-category:

Nerve Mobility - Chronic and mixed WAD studies (>3mon) (n=2 studies)

Table 71: Summary of included studies (chronic nerve mobility)

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significan t
(Farooq, 2012)	Compare median nerve movement in	7 people with chronic WAD (29% female)	10 healthy controls (50% female)	Nerve mobility	Longitudinal nerve movement was reduced by 24% in	No differences in nerve sliding in WAD,	NS
Effects of whiplash injury on median nerve	subjects who have previously had a whiplash			Longitudinal nerve Ultrasound	the WAD group compared with control group, where the mean movement		
mobility: A	associated				was 1.31 (SD=0.49)		

comparative study	disorder (WAD) with a control group				mm and 1.73 (SD=0.92) mm respectively. Transverse movement was reduced by 66.7% in subject group compared with control group, where the mean movement was -0.06 (SD=0.51) mm and -0.18 (SD=0.54) mm respectively.		
(Greening et al., 2005) In vivo study of nerve movement and mechanosens itive of the median nerve in whiplash and non- specific arm pain patients	To examine median nerve sensitivity in people with WAD with chronic neck and arm pain	9 people with chronic WAD (56% female)	8 healthy controls (50% female)	Nerve mobility Longitudinal and transverse median nerve Ultrasound	Ultrasound used to measure longitudinal (forearm) and transverse (wrist) median nerve movement. Longitudinal movement reduced in WAD by 71% (p<0.05), mean 1.32mm (95%CI 0.91- 1.73) compared to .38mm (95%CI 0.2- 0.56).	Reduced median nerve sliding in people with chronic WAD may reflect underlying nerve pathology	Significant nerve sliding WAD <c< td=""></c<>

Others

Category: Imaging

Sub-category: Others - Chronic and mixed WAD studies (>3mon) (n=1 study)

Table 72: Summary of included studies (chronic - other)

Author, Year	Aim	WAD Population	Comparison Population	Main Outcome assessed	Results	Comments	Significant
(Patijn et al., 2001)	To examine the diagnostic	47 people with chronic WAD	26 healthy controls	Computed tomography	The test correctly classified 80% of	The study concludes that rotatory CT has	Inconclusive
CT atudy of	value of	(>6mo)	(62% female)	(CT)	people with WAD	low diagnostic value	
craniovertebral	people with	(55% remate)			subjects were		
rotation in	WAD and				classified as false		
whiplash injury	normal				positive.		
	controls						

A.7.5. Chronic imaging evidence summary

Table 73: Summary of evidence for included studies in chronic imaging

Sub-category	Studies	Population	Measurement	Conclusion	Evidence Summary
Morphology Structure changes	(Dullerud et al., 2010)	28 WAD 27 controls	Cervical structures Alar and	MRI is not recommended as a routine workup in WAD	2 – Sig 3 – NS
Craniovertebra l ligament			ligament - MRI		
(Independent cohorts n=5)					
	(Kaale et al., 2005a, 2005b; Krakenes et al., 2003)	92 WAD 30 controls	Cervical structures Alar and transverse ligament - MRI	People with WAD had more high-grade lesions than controls. MRI can show structural damage correlated to NDI score.	
	(Knackstedt et al., 2012)	22 WAD 46 people with chronic cervicogenic headache 19 people with chronic migraine	Cervical structures Alar and transverse ligament - MRI	Similar frequency of changes in craniovertebral ligaments across the group.	

	(Lindgren et al., 2009)	25WAD 25 controls	Cervical structures Alar and transverse	WAD had both more abnormal signals from the alar ligaments and more abnormal movements in the dMRI at the CO-C2 level than the control.	
	(Myran et al., 2008) (Myran et al., 2011)	28 WAD I-II 57 chronic nontraumatic neck pain 57 controls	ligament - MRI Cervical structures Alar - MRI	No difference in alar ligament signal intensity changes across groups. The diagnostic value and the clinical relevance of MR-detectable areas of high intensity in the alar ligaments remain questionable.	
Morphology Structure changes Others (Independent cohorts n=3)	(Farrell et al., 2016)	20 WAD 20 controls	Cervical Meniscoid morphology	Morphological differences of cervical spine meniscoids between the WAD and control groups may form a component of the pathoanatomic of chronic WAD.	2 – Sig 1 – neg. Sig
	(Grushka et al., 2007)	54 WAD; 82 non-trauma temporomandibula r dysfunctions (TMD)	TMD disc changes - MRI	Post-MVA people demonstrate no evidence of jaw injury by bone scan and MRI study.	
	(Lee et al., 2018)	76 people with WAD and TMD 58 people with post-traumatic TMD 85 people with idiopathic TMD	TMD disc changes MRI	A whiplash injury may lead to TMD via different mechanisms	
Morphology Muscle Fat Infiltration (Independent cohorts n=6)	(Abbott et al., 2015)	5 WAD 5 WAD recovered 5 controls	Cervical multifidus and semispinalis cervicis	The magnitude of MFI in the medial quartiles (1 and 2) is greatest in the chronic WAD group	6 – Sig
	(Abbott et al., 2018)	31 WAD 31 controls	Cervical multifidus - MRI	Increased MFI within the cervical multifidus muscles of individuals with persistent WAD	

	(Elliott et al., 2006) (Elliott et al., 2010)	79 WAD 34 controls 78 WAD 31 controls	Cervical multifidus – MRI Longus capitis/colli muscles - MRI	Greater fatty deposits in the cervical extensor, deeper longus capitis/colli muscles of people with chronic WAD.	
	(Elliott, Sterling, et al., 2008)	79 WAD 23 insidious-onset neck pain	Cervical extensor	Insidious-neck pain group could be distinguished from the WAD group using a decision tree based on average muscular fat and cold pain thresholds.	
	(Karlsson et al., 2016) (Karlsson et al., 2019)	31 WAD 31 controls	Multifidus - MRI	WAD with a severe disability had higher fat infiltration in the multifidus compared to controls and to those with mild/moderate disability.	
	(Valera- Calero et al., 2021)	41 WAD 39 controls	Cervical muscles - US	US assessment of deep cervical extensors revealed greater fatty infiltration.	
Morphology Muscle Size (Independent cohorts n=4)	(Cagnie et al., 2010)	16WAD 19 controls	Cervical flexor activity – Muscle functional- MRI	Failed to demonstrate a changed activity pattern in the WAD group compared with the control group	2 - Sig 2 - NS
	(Elliott, Jull, et al., 2008) (Elliott et al., 2014)	79 WAD 34 controls 79 WAD 23 chronic idiopathic neck pain 34 controls	Cervical extensor Cross-sectional area (rCSA) - MRI	WAD rCSA of the cervical paraspinal musculature differs from subjects with no history of neck pain.	
	(Matsumoto et al., 2010) (Matsumoto et al., 2012)	133 WAD 223 controls 23 WAD 60 controls	Cervical extensor rCSA- MRI	No difference in the change in CSA over time between the symptomatic and asymptomatic people in cross- sectional and after a 10-year follow-up period.	
	(Van Looveren et al., 2021)	37 WAD 45 idiopathic neck pain 35 controls	Cervical extensor rCSA- MRI	Suggest changes in muscle morphology in both neck pain cohorts.	

Muscle morphology (Ultrasound) (Independent cohorts n=2)	(Peolsson et al., 2016; Peterson et al., 2016)	40 WAD 40 controls 9 WAD 9controls	Multifidus muscle - US Neck muscle - US During neck extensions	WAD have higher deformation rates in the multifidus muscle compared to controls. An altered mechanical strain of the trapezius and multifidus muscles in individuals with WAD when performing a standardised low-loaded neck extension.	2 – Sig
	(Rahnama et al., 2018)	36 WAD 36 controls	semispinalis cervicis and multifidus - Ultrasound	Deep dorsal neck muscles differ between individuals with WAD and controls	
Metabolites measure by MRS (Independent cohorts n=2)	(Elliott et al., 2012)	5 WAD 7 controls	N- cetylaspartate/c reatine ratios - Magnetic resonance spectroscopy (MRS)	Changes in cord biochemistry in tandem with altered water diffusion in the cervical multifidus in chronic whiplash.	1 – Sig 1 – NS
	(Farrell et al., 2020)&	41 WAD 14 controls	N- acetylaspartate (NAA), creatine (Cr) and choline (Cho) - MRS	Major metabolic changes do not present in chronic WAD	
	(Farrell et al., 2021)	38 WAD 16 controls	Acetylaspartat e(NAA), creatine (Cr), choline(Cho), myo-inositol (Ins), and glutamate/glut amine (Glx) - MRS	No group differences in metabolite ratios at the ACC, 1MC, or SSC between people with chronic WAD compared with controls.	
Brain (Independent cohorts n=3)	(Sturzenegg er et al., 2008)	21 WAD I-II 18 controls	Brain volumetry -MRI	It does not support the loss of brain tissue following whiplash injury as measured normalised deformation	2 – Sig 1 – NS

	(Coppieters et al., 2021)	37 CWAD 38 Idiopathic Neck pain (CNIP) 32 controls	Amygdala- frontal operculum functional connectivity	Group difference was enhanced amygdala functional coupling during rest with the frontal operculum in women with CINP and CWAD compared to healthy controls.	
	(Coppieters et al., 2018)	37 CWAD 374 CNIP 28 controls	Cortical thickness and white matter	CWAD showed the most pronounced alterations in resting-state functional connectivity.	
	(Coppieters et al., 2017)	31 CWAD 37 CNIP 31 controls	Regional Grey Matter Volume	Emphasise the role of structural brain alterations in women with CWAD compared with CINP.	
Nerve Mobility (Independent studies n=2)	(Farooq, 2012)	7 WAD 10 controls	Longitudinal nerve Ultrasound	No difference in never sliding in WAD than control.	1 –Sig 1– NS
	(Greening et al., 2005)	9 WAD 8 controls	Longitudinal and transverse median nerve- Ultrasound	Reduced median nerve sliding in people with chronic WAD may reflect underlying nerve pathology.	
Others (Independent cohort n=1)	(Patijn et al., 2001)	47 WAD 26 controls	Computed tomography (CT)	The study concludes that rotatory CT has a low diagnostic value for chronic WAD.	1- Inconclusive

* Discrimination between groups

Table 74: Evidence to decision framework (imaging in acute WAD)

Strength of association How substantial are the assessed outcome differences between people with WAD and control populations?				
Judgement	Research evidence	Additional considerations		
 Trivial Small Moderate Large Varies Don't know 	 There are only a few acute studies, and the evidence is varying from inconclusive to small. Morphology - Structure changes - 2/3 independent studies showed structured changes (e.g., alar and transverse ligament) in people with WAD. 	These studies are more exploratory studies investigate the mechanism instead of being a validated accuracy diagnostic study. Consistent with previous guidelines and literature		

	 Morphology – Muscle Fat Infiltration (MFI): 1/1 study showed at 3 months higher MFI in cervical neck extensor muscle in people with WAD in the sub-group of moderate/severe disability. Morphology - Muscle size: 1/1 study showed no difference in cross-sectional area of neck muscle in people with acute WAD. Muscle stiffness: 1/1 study showed increased muscle stiffness in trapezius in people with acute WAD. 	
Undesirable Effects		·
How substantial are the	e undesirable anticipated effects associated with the assess	Additional considerations
	Not reported.	Trivial adverse effects expected with MRI.
 Moderate Small Trivial Varies Don't know 		Some the people can tolerate going to an MRI; however, for some people, it might be contraindicated due to claustrophobia.
Balance of effects Does the balance betwe	een desirable and undesirable effects favour assessing or n	ot assessing these factors?
Judgement	Research evidence	Additional considerations
 Favours not assessing Probably favours not assessing Does not favour either assessing or not assessing Probably favours assessing Favours assessing Varies Don't know 	Not reported	The studies are more explanatory and not diagnostic accuracy studies and won't assist in treatment direction.
Resources required How large are the resou	urce requirements (costs)?	

Judgement	Research evidence	Additional considerations
 Large costs Moderate costs Negligible costs and savings Moderate savings Large savings Varies Don't know 	Not reported.	Equipment is costly and requires an advanced understanding in how to analysis it. A standard radiologist is not educated on how to analyse fat infiltration.
Equity What would be the Imp	act on health equity?	
Judgement	Research evidence	Additional considerations
 Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	Not reported.	Due to the cost of the advanced image, not everyone can afford doing an MRI
Acceptability Is the assessment meth	nod acceptable to key stakeholders?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	Not reported	Performing an MRI to evaluate morphological changes in the neck is not a routine exam for WAD conditions
Feasibility Is the assessment meth	nod feasible to implement?	
Judgement	Research evidence	Additional considerations

 No Probably no Probably yes Yes Varies Don't know 	Not reported.	Not feasible for people with WAD to undergo MRI imaging to evaluate morphological changes in neck structures (e.g., musculature).
--	---------------	---

A.7.6. Conclusion (imaging in acute WAD)

VOTE1: Assessment of for structure changes, muscle fat infiltration and muscle size and muscle stiffness people with acute WAD

Are you for or against healthcare professionals assessing the following imaging technique in people with acute WAD: magnetic resonance imaging (MRI) and Ultrasound (US) to assess changes in Morphology – structure changes, muscle fat infiltration and muscle size- and muscle stiffness?

Type of recommendation (structure changes, muscle fat infiltration and muscle size and muscle stiffness people with acute WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
•	0	0	0	0

Recommendations

There was strong guideline panel consensus that primary healthcare professionals do not assess the following imaging techniques: Magnetic resonance imaging (MRI) and Ultrasound (US) to assess changes in morphology – structure changes, muscle fat infiltration and muscle size- and muscle stiffness in people with acute WAD.

(Panel vote summary: 10/12 strong against (83%), 1/12 conditional against, 1/12 conditional for)

Justification

• Studies are largely inconclusive

- Studies are more exploratory studies and not diagnostic studies, therefore at present the imaging techniques do not assist in diagnosing WAD nor helping in treatment.
- The techniques and equipment are very costly (e.g., MRI).
- The analysis requires advanced neuroimaging expertise not readily available in the clinical setting.

Table 75: Evidence to decision framework (imaging in chronic WAD)

Strength of association				
How substantial are the assessed outcome differences between people with WAD and control populations?				
Judgement	Research evidence	Additional considerations		
 Trivial Small Moderate Large Varies 	The evidence is largely inconclusive for morphology (structure changes, muscle size, muscle morphology with ultrasound), metabolites measured by MRS, Brain, and nerve mobility. The exception is for muscle fat infiltration (MFI), with 6/6 showing an increase of MFI in people with WAD compared to the control group	These studies are more exploratory studies investigating the mechanism instead of being a validated accuracy diagnostic study. Consistent with previous guidelines and literature		
○ Don't know	 Morphology - Structure changes: 2/5 independent studies showed structured changes (e.g., alar and transverse ligament) in people with WAD. Morphology - Muscle Fat Infiltration (MFI): 6/6 independent studies showed higher MFI in cervical extensor muscle in people with WAD. Morphology - Muscle size: 2/4 independent studies showed neck muscle cross-sectional area differ in people with WAD. Muscle morphology (Ultrasound): 2/2 independent studies higher neck muscle deformation in people with WAD Metabolites measure by Magnetic resonance spectroscopy (MRS): 1/2 studies showed metabolic changes in spinal cord in people with WAD. 			

	 Brain: 2/3 independent studies showed significant in people with WAD Nerve Mobility: 1/2 studies showed reduced median nerve sliding in people with WAD. 	
Undesirable Effects How substantial are the	undesirable anticipated effects associated with the asses	sment method?
Judgement	Research evidence	Additional considerations
 Large Moderate Small Trivial Varies Don't know 	Not reported.	Trivial adverse effects expected with MRI. Some the people can tolerate going to an MRI; however, for some people, it might be contraindicated due to claustrophobia.
Balance of effects Does the balance betwe	een desirable and undesirable effects favour assessing or n	ot assessing these factors?
Judgement	Research evidence	Additional considerations
 Favours not assessing Probably favours not assessing Does not favour either assessing or not assessing Probably favours assessing Favours assessing Varies Don't know 	Not reported	The studies are more explanatory and not diagnostic accuracy studies and won't assist in treatment direction.
Resources required How large are the resou	urce requirements (costs)?	
Judgement	Research evidence	Additional considerations
 Large costs Moderate costs Negligible costs and savings 	Not reported.	Equipment is costly and requires an advanced understanding in how to analysis it. A standard radiologist is not educated on how to analyse fat infiltration.

 Moderate savings Large savings Varies 		
 Don't know 		
Equity What would be the Impa	act on health equity?	
Judgement	Research evidence	Additional considerations
 Reduced Probably reduced Probably no impact Probably increased Increased Varies Don't know 	Not reported.	Due to the cost of the advanced imaging, not everyone can afford one.
Acceptability Is the assessment meth	od acceptable to key stakeholders?	
Judgement	Research evidence	Additional considerations
 No Probably no Probably yes Yes Varies Don't know 	Not reported	Performing an MRI to evaluate morphological changes in the neck is not a routine exam for WAD conditions.
Feasibility	ad fassible to implement?	
Judgement	Research evidence	Additional considerations

 No Probably no Probably yes Yes Varies Don't know 	Not reported.	Not feasible for people with WAD to undergo MRI imaging to evaluate morphological changes in neck structures (e.g., musculature).
--	---------------	---

A.7.7. Conclusion (imaging in chronic WAD)

VOTE 1: Assessment of structure changes, muscle fat infiltration, muscle size, muscle morphology (ultrasound)- metabolites, brain, nerve mobility and CT (ROM) people with chronic WAD

Are you for or against healthcare professionals assessing the following imaging techniques in people with chronic WAD: magnetic resonance imaging (MRI) and Ultrasound (US) to assess changes in WAD morphology – structure changes, muscle fat infiltration, muscle size, muscle morphology, metabolites measured by MRS, Brain, and nerve mobility and others?

Type of recommendation (structure changes, muscle fat infiltration, muscle size, muscle morphology (ultrasound)- metabolites, brain, nerve mobility and CT (ROM) people with chronic WAD)

Strong consensus recommendation for not measuring the factor(s)	Conditional consensus recommendation to not measure the factor (s)	Conditional consensus recommendation for either measuring the factor (s) or not	Conditional consensus recommendation for measuring the factor (s)	Strong consensus recommendation for measuring the factor(s)
•	0	0	0	0

Recommendations

There was strong guideline panel consensus that primary healthcare professionals do not assess the following techniques Magnetic resonance imaging (MRI) and Ultrasound (US) to assess changes in WAD Morphology – structure changes, muscle fat infiltration, muscle size, muscle morphology, metabolites measured by MRS, Brain, and nerve mobility and others in people with chronic WAD.

(Panel vote summary: 10/10 (100%) strong against)

Justification

- Studies are largely inconclusive with the exception of evidence for muscle fat infiltration.
- Studies are more exploratory studies and not diagnostic studies, therefore at present the imaging techniques do not assist in diagnosing WAD nor helping in treatment.
- The techniques and equipment are very costly (e.g., MRI).
- The analysis requires advanced neuroimaging expertise not readily available in the clinical setting.

8. References

- Abbott, R., Pedler, A., Sterling, M., Hides, J., Murphey, T., Hoggarth, M., & Elliott, J. (2015). The geography of fatty infiltrates within the cervical multifidus and semispinalis cervicis in individuals with chronic whiplash-associated disorders. *Journal of Orthopaedic & Sports Physical Therapy*, 45(4), 281-288. https://doi.org/https://dx.doi.org/10.2519/jospt.2015.5719
- Abbott, R., Peolsson, A., West, J., Elliott, J. M., Aslund, U., Karlsson, A., & Leinhard, O. D. (2018). The qualitative grading of muscle fat infiltration in whiplash using fat and water magnetic resonance imaging. *Spine Journal: Official Journal of the North American Spine Society*, *18*(5), 717-725. https://doi.org/https://dx.doi.org/10.1016/j.spinee.2017.08.233
- Aljinovic, J., Barisic, I., Poljicanin, A., Kuzmicic, S., Vukojevic, K., Bokun, D. G., & Vlak, T. (2020). Can measuring passive neck muscle stiffness in whiplash injury patients help detect false whiplash claims? *Wiener Klinische Wochenschrift, 132*(17-18), 506-514. https://doi.org/10.1007/s00508-020-01631-y
- Alonso-Coello, P., Schünemann, H. J., Moberg, J., Brignardello-Petersen, R., Akl, E. A., Davoli, M., Treweek, S., Mustafa, R. A., Rada, G., & Rosenbaum, S. (2016). GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. *BMJ*, 353.
- Anderson, S. E., Boesch, C., Zimmermann, H., Busato, A., Hodler, J., Bingisser, R., Ulbrich, E. J., Nidecker, A., Buitrago-Tellez, C. H., Bonel, H. M., Heini, P., Schaeren, S., & Sturzenegger, M. (2012). Are there cervical spine findings at MR imaging that are specific to acute symptomatic whiplash injury? A prospective controlled study with four experienced blinded readers. *Radiology*, 262(2), 567-575. https://doi.org/http://dx.doi.org/10.1148/radiol.11102115
- Anstey, R., Kongsted, A., Kamper, S., & Hancock, M. (2016). Are people with whiplash-associated neck pain different from people with nonspecific neck pain? *Journal of Orthopaedic and Sports Physical Therapy*, 46(10), 894-890.
- Antonaci, F., Bulgheroni, M., Ghirmai, S., Lanfranchi, S., Dalla Toffola, E., Sandrini, G., & Nappi, G. (2002). 3D kinematic analysis and clinical evaluation of neck movements in patients with whiplash injury. *Cephalalgia*, 22(7), 533-542. https://doi.org/10.1046/j.1468-2982.2002.00405.x
- Armstrong, B. S., McNair, P. J., & Williams, M. (2005). Head and neck position sense in whiplash patients and healthy individuals and the effect of the cranio-cervical flexion action. *Clin Biomech (Bristol, Avon)*, 20(7), 675-684. https://doi.org/10.1016/j.clinbiomech.2005.03.009
- Astrup, J., Johansen, A.-M., Gyntelberg, F., Lei, A., & Marott, J. L. (2021). Impaired neck motor control in chronic whiplash and tension-type headache. *Acta Neurologica Scandinavica*, 144(4), 394-399. https://doi.org/http://dx.doi.org/10.1111/ane.13473
- Banic, B., Petersen-Felix, S., Andersen, O. K., Radanov, B. P., Villiger, P. M., Arendt-Nielsen, L., & Curatolo, M. (2004). Evidence for spinal cord hypersensitivity in chronic pain after whiplash injury and in fibromyalgia. *Pain*, 107(1-2), 7-15. https://doi.org/10.1016/j.pain.2003.05.001
- Baydal-Bertomeu, J. M., Page, A. F., Belda-Lois, J. M., Garrido-Jaen, D., & Prat, J. M. (2011). Neck motion patterns in whiplash-associated disorders: quantifying variability and spontaneity of movement. *Clin Biomech*, *26*(1), 29-34. https://doi.org/https://dx.doi.org/10.1016/j.clinbiomech.2010.08.008
- Beeckmans, K., Crunelle, C., Van Ingelgom, S., Michiels, K., Dierckx, E., Vancoillie, P., Hauman, H., & Sabbe, B. (2017). Persistent cognitive deficits after whiplash injury: a comparative study with mild traumatic brain injury patients and healthy volunteers. *Acta Neurologica Belgica*, 117(2), 493-500. https://doi.org/https://dx.doi.org/10.1007/s13760-017-0745-3
- Bexander, C. S. M., & Hodges, P. W. (2012). Cervico-ocular coordination during neck rotation is distorted in people with whiplash-associated disorders. *Experimental Brain Research*, 217(1), 67-77. https://doi.org/10.1007/s00221-011-2973-8
- Borsbo, B., Liedberg, G. M., Wallin, M., & Gerdle, B. (2012). Subgroups based on thermal and pressure pain thresholds in women with chronic whiplash display differences in clinical presentation - an explorative study. *Journal of pain research*, *5*, 511-521. https://doi.org/https://dx.doi.org/10.2147/JPR.S37062
- Bunketorp-Kall, L. S., Andersson, C., & Asker, B. (2007). The impact of subacute whiplash-associated disorders on functional self-efficacy: a cohort study. *Int J Rehabil Res*, *30*(3), 221-226. https://doi.org/https://10.1097/MRR.0b013e32829fb3c7

- Cagnie, B., Dolphens, M., Peeters, I., Achten, E., Cambier, D., & Danneels, L. (2010). Use of muscle functional magnetic resonance imaging to compare cervical flexor activity between patients with whiplash-associated disorders and people who are healthy. *Phys Ther, 90*(8), 1157-1164. https://doi.org/https://dx.doi.org/10.2522/ptj.20090351
- Campbell, L., Smith, A., McGregor, L., & Sterling, M. (2018). Psychological factors and the development of chronic whiplash–associated disorder (s). *The Clinical journal of pain*, 34(8), 755-768.
- Castaldo, M., Catena, A., Fernandez-de-Las-Penas, C., & Arendt-Nielsen, L. (2019). Widespread Pressure Pain Hypersensitivity, Health History, and Trigger Points in Patients with Chronic Neck Pain: A Preliminary Study. *Pain medicine*, *20*(12), 2516-2527. https://doi.org/https://dx.doi.org/10.1093/pm/pnz035
- Chien, A., Eliav, E., & Sterling, M. (2008a). Hypoesthesia occurs in acute whiplash irrespective of pain and disability levels and the presence of sensory hypersensitivity. *Clin J Pain*, 24(9), 759-766. https://doi.org/https://dx.doi.org/10.1097/AJP.0b013e3181773b95
- Chien, A., Eliav, E., & Sterling, M. (2008b). Whiplash (grade II) and cervical radiculopathy share a similar sensory presentation: an investigation using quantitative sensory testing. *Clin J Pain*, 24(7), 595-603. https://doi.org/https://dx.doi.org/10.1097/AJP.0b013e31816ed4fc
- Chien, A., Eliav, E., & Sterling, M. (2009). Hypoaesthesia occurs with sensory hypersensitivity in chronic whiplash--further evidence of a neuropathic condition. *Manual Ther*, 14(2), 138-146. https://doi.org/https://dx.doi.org/10.1016/j.math.2007.12.004
- Chien, A., Eliav, E., & Sterling, M. (2010). The development of sensory hypoesthesia after whiplash injury. *Clin J Pain*, 26(8), 722-728. https://doi.org/https://dx.doi.org/10.1097/AJP.0b013e3181f096ac
- Chien, A., & Sterling, M. (2010). Sensory hypoaesthesia is a feature of chronic whiplash but not chronic idiopathic neck pain. *Manual Ther*, *15*(1), 48-53. https://doi.org/https://dx.doi.org/10.1016/j.math.2009.05.012
- Coppieters, I., Cagnie, B., De Pauw, R., Danneels, L., Ickmans, K., & Meeus, M. (2016). Differences between traumatic and non-traumatic chronic neck pain patients: The role of central pain modulation, cognitive functioning and psychosocial characteristics. *Manual therapy*, *25*, e71. https://doi.org/http://dx.doi.org/10.1016/j.math.2016.05.112
- Coppieters, I., Cagnie, B., V, R., Meeus, M., & Timmers, I. (2021). Enhanced amygdala-frontal operculum functional connectivity during rest in women with chronic neck pain: Associations with impaired conditioned pain modulation. *NeuroImage Clinical*, *30*, 102638. https://doi.org/https://dx.doi.org/10.1016/j.nicl.2021.102638
- Coppieters, I., De Pauw, R., Caeyenberghs, K., Danneels, L., Kregel, J., Pattyn, A., Meeus, M., & Cagnie, B. (2017). Decreased Regional Grey Matter Volume in Women with Chronic Whiplash-Associated Disorders: Relationships with Cognitive Deficits and Disturbed Pain Processing. *Pain physician*, 20(7), E1025-E1051.
- Coppieters, I., De Pauw, R., Caeyenberghs, K., Lenoir, D., DeBlaere, K., Genbrugge, E., Meeus, M., & Cagnie, B. (2018). Differences in white matter structure and cortical thickness between patients with traumatic and idiopathic chronic neck pain: Associations with cognition and pain modulation? *Human Brain Mapping*, *39*(4), 1721-1742. https://doi.org/https://dx.doi.org/10.1002/hbm.23947
- Coppieters, I., Ickmans, K., Cagnie, B., Nijs, J., De Pauw, R., Noten, S., & Meeus, M. (2015). Cognitive performance is related to central sensitization and health-related quality of life in patients with chronic whiplash-associated disorders and fibromyalgia. *Pain physician*, *18*(3), E389-E402. http://www.painphysicianjournal.com/2015/may/2015;18;E389-E401.pdf
- Cote, J. N., Patenaude, I., St-Onge, N., & Fung, J. (2009). Whiplash-associated disorders affect postural reactions to antero-posterior support surface translations during sitting. *Gait Posture*, *29*(4), 603-611. https://doi.org/https://dx.doi.org/10.1016/j.gaitpost.2008.12.014
- Daenen, L., Nijs, J., Cras, P., Wouters, K., & Roussel, N. (2014). Changes in Pain Modulation Occur Soon After Whiplash Trauma but are not Related to Altered Perception of Distorted Visual Feedback. *Pain Practice*, 14(7), 588-598. https://doi.org/https://dx.doi.org/10.1111/papr.12113
- Daenen, L., Nijs, J., Roussel, N., Wouters, K., & Cras, P. (2012). Altered perception of distorted visual feedback occurs soon after whiplash injury: an experimental study of central nervous system processing. *Pain physician*, 15(5), 405-413.

- Daenen, L., Nijs, J., Roussel, N., Wouters, K., Van, L. M., & Cras, P. (2012). Sensorimotor incongruence exacerbates symptoms in patients with chronic whiplash associated disorders: An experimental study. *Rheumatology*, *51*(8), 1492-1499.
- Dall'Alba, P. T., Sterling, M. M., Treleaven, J. M., Edwards, S. L., & Jull, G. A. (2001). Cervical range of motion discriminates between asymptomatic persons and those with whiplash. *Spine (Phila Pa 1976)*, *26*(19), 2090-2094. https://doi.org/10.1097/00007632-200110010-00009
- De Pauw, R., Coppieters, I., Palmans, T., Danneels, L., Meeus, M., & Cagnie, B. (2018). Motor impairment in patients with chronic neck pain: does the traumatic event play a significant role? A case-control study. *Spine Journal: Official Journal of the North American Spine Society*, *18*(8), 1406-1416. https://doi.org/https://dx.doi.org/10.1016/j.spinee.2018.01.009
- Dehner, C., Heym, B., Maier, D., Sander, S., Arand, M., Elbel, M., Hartwig, E., & Kramer, M. (2008). Postural control deficit in acute QTF grade II whiplash injuries. *Gait Posture*, 28(1), 113-119.
- Descarreaux, M., Mayrand, N., & Raymond, J. (2007). Neuromuscular control of the head in an isometric force reproduction task: comparison of whiplash subjects and healthy controls. *Spine J*, 7(6), 647-653.
- Don, S., De, K. M., Voogt, L., Ickmans, K., Daenen, L., & Nijs, J. (2017). The effect of visual feedback of the neck during movement in people with, chronic whiplash-associated disorders: An experimental study. *Journal of Orthopaedic and Sports Physical Therapy*, 47(3), 190-199.
- Dullerud, R., Gjertsen, O., & Server, A. (2010). Magnetic resonance imaging of ligaments and membranes in the craniocervical junction in whiplash-associated injury and in healthy control subjects. *Acta Radiologica*, 51(2), 207-212. https://doi.org/10.3109/02841850903321617
- Eklund, A., Wiesinger, B., Lampa, E., Osterlund, C., Wanman, A., & Haggman-Henrikson, B. (2020). Jawneck motor function in the acute stage after whiplash trauma. *Journal of Oral Rehabilitation*, 47(7), 834-842. https://doi.org/https://dx.doi.org/10.1111/joor.12981
- Elliott, J., Jull, G., Noteboom, J., & Galloway, G. (2008). MRI study of the cross-sectional area for the cervical extensor musculature in patients with persistent whiplash associated disorders. *Manual therapy*, *13*(3), 258-265.
- Elliott, J., Jull, G., Noteboom, J. T., Darnell, R., Galloway, G., & Gibbon, W. W. (2006). Fatty infiltration in the cervical extensor muscles in persistent whiplash-associated disorders: a magnetic resonance imaging analysis. *Spine (Phila Pa 1976)*, *31*(22), E847-855. https://doi.org/10.1097/01.brs.0000240841.07050.34
- Elliott, J., Pedler, A., Kenardy, J., Galloway, G., Jull, G., & Sterling, M. (2011). The Temporal Development of Fatty Infiltrates in the Neck Muscles Following Whiplash Injury: An Association with Pain and Posttraumatic Stress. *PLoS one*, 6(6). https://doi.org/10.1371/journal.pone.0021194
- Elliott, J., Sterling, M., Noteboom, J. T., Darnell, R., Galloway, G., & Jull, G. (2008). Fatty infiltrate in the cervical extensor muscles is not a feature of chronic, insidious-onset neck pain. *Clinical Radiology*, 63(6), 681-687. https://doi.org/10.1016/j.crad.2007.11.011
- Elliott, J. M., O'Leary, S., Sterling, M., Hendrikz, J., Pedler, A., & Jull, G. (2010). Magnetic Resonance Imaging Findings of Fatty Infiltrate in the Cervical Flexors in Chronic Whiplash. *Spine*, *35*(9), 948-954. https://doi.org/10.1097/BRS.0b013e3181bb0e55
- Elliott, J. M., Pedler, A. R., Cowin, G., Sterling, M., & McMahon, K. (2012). Spinal cord metabolism and muscle water diffusion in whiplash. *Spinal Cord*, *50*(6), 474-476. https://doi.org/http://dx.doi.org/10.1038/sc.2011.17
- Elliott, J. M., Pedler, A. R., Jull, G. A., Van Wyk, L., Galloway, G. G., & Oleary, S. P. (2014). Differential changes in muscle composition exist in traumatic and nontraumatic neck pain. *Spine (03622436)*, 39(1), 39-47. https://doi.org/10.1097/BRS.0000000000033
- Erika Jasmin, U., Sandra, E., Boesch, C., Hodler, J., Busato, A., Schraner, C., Anderson, S. E., Bonel, H., Zimmermann, H., & Sturzenegger, M. (2011). Alterations of the Transverse Ligament: An MRI Study Comparing Patients With Acute Whiplash and Matched Control Subjects. *American journal* of roentgenology (1976), 197(4), 961-967. https://doi.org/10.2214/AJR.10.6321
- Ernst, M., Williams, L., Werner, I., Crawford, R., & Treleaven, J. (2019). Clinical assessment of cervical movement sense in those with neck pain compared to asymptomatic individuals. *Musculoskeletal Science and Practice*, 43, 64-69.
- Ettlin, T., Schuster, C., Stoffel, R., Bruderlin, A., & Kischka, U. (2008). A distinct pattern of myofascial findings in patients after whiplash injury. *Arch Phys Med Rehabil*, 89(7), 1290-1293. https://doi.org/https://dx.doi.org/10.1016/j.apmr.2007.11.041

- F Scott, F., Sterling, M., Irving-Rodgers, H., Schmid, A. B., & Irving-Rodgers, H. (2020). Small fibre pathology in chronic whiplash-associated disorder: A cross-sectional study. *European Journal of Pain*, 24(6), 1045-1057. https://doi.org/10.1002/ejp.1549
- Farooq, M. (2012). Effects of whipash injury on median nerve mobility: A comparative study. *Journal of Physiotherapy & Sports Medicine*, 1(2), 115-130.
- Farrell, S., Osmotherly, P., Cornwall, J., Lau, P., & Rivett, D. (2016). Morphology of cervical spine meniscoids in individuals with chronic whiplash-associated disorder: A case-control study. *Journal of Orthopaedic and Sports Physical Therapy*, 46(10), 902-910.
- Farrell, S. F., Cowin, G., Pedler, A., Durbridge, G., & Sterline, M. (2020). Spinal cord injury is not a feature of chronic whiplash-associated disorder: a magnetic resonance spectroscopy study. *European Spine Journal*, 29(6), 1212-1218. https://doi.org/10.1007/s00586-020-06407-6
- Farrell, S. F., Cowin, G. J., Pedler, A., Durbridge, G., de Zoete, R. M. J., & Sterling, M. (2021). Magnetic Resonance Spectroscopy Assessment of Brain Metabolite Concentrations in Individuals With Chronic Whiplash-associated Disorder: A Cross-sectional Study. *Clinical Journal of Pain*, 37(1), 28-37. https://doi.org/https://dx.doi.org/10.1097/AJP.000000000000890
- Feipel, V., Salvia, P., Klein, H., & Rooze, M. (2006). Head repositioning accuracy in patients with whiplashassociated disorders. *Spine (Phila Pa 1976), 31*(2), E51-58. https://doi.org/10.1097/01.brs.0000194786.63690.54
- Fernandez-Perez, A. M., Villaverde-Gutierrez, C., Mora-Sanchez, A., Alonso-Blanco, C., Sterling, M., & Fernandez-de-Las-Penas, C. (2012). Muscle trigger points, pressure pain threshold, and cervical range of motion in patients with high level of disability related to acute whiplash injury. *J Orthop Sports Phys Ther*, 42(7), 634-641. https://doi.org/https://dx.doi.org/10.2519/jospt.2012.4117
- Field, S., Treleaven, J., & Jull, G. (2008). Standing balance: A comparison between idiopathic and whiplash-induced neck pain. *Manual therapy*, 13(3), 183-191. https://doi.org/10.1016/j.math.2006.12.005
- Findling, O., Schuster, C., Sellner, J., Ettlin, T., & Allum, J. H. (2011). Trunk sway in patients with and without, mild traumatic brain injury after whiplash injury. *Gait Posture*, *34*(4), 473-478. https://doi.org/https://dx.doi.org/10.1016/j.gaitpost.2011.06.021
- Frydas, D., Rushton, A., Wright, C., Kontakiotis, N., Mystrakis, A., & Heneghan, N. (2014). Discriminative validity of sensory evaluation in a whiplash-associated disorder II population. *International Journal of Therapy & Rehabilitation*, 21(10), 460-467.
- Gaab, J., Baumann, S., Budnoik, A., Gmunder, H., Hottinger, N., & Ehlert, U. (2005). Reduced reactivity and enhanced negative feedback sensitivity of the hypothalamus-pituitary-adrenal axis in chronic whiplash-associated disorder. *Pain*, *119*(1-3), 219-224. https://doi.org/10.1016/j.pain.2005.10.001
- Gandelman-Marton, R., Arlazoroff, A., & Dvir, Z. (2016). Postural stability in patients with different types of head and neck trauma in comparison to healthy subjects. *Brain Injury*, *30*(13-14), 1612-1616.
- Greening, J., Dilley, A., & Lynn, B. (2005). In vivo study of nerve movement and mechanosensitivity of the median nerve in whiplash and non-specific arm pain patients. *Pain,* 115(3), 248-253. https://doi.org/10.1016/j.pain.2005.02.023
- Grip, H., Ohberg, F., Wiklund, U., Sterner, Y., Karlsson, J. S., & Gerdle, B. (2003). Classification of neck movement patterns related to whiplash-associated disorders using neural networks. *IEEE Trans Inf Technol Biomed*, 7(4), 412-418. https://doi.org/10.1109/titb.2003.821322
- Grip, H., Sundelin, G., Gerdle, B., & Karlsson, J. S. (2007). Variations in the axis of motion during head repositioning--a comparison of subjects with whiplash-associated disorders or non-specific neck pain and healthy controls. *Clin Biomech*, 22(8), 865-873.
- Grip, H., Sundelin, G., Gerdle, B., & Stefan Karlsson, J. (2008). Cervical helical axis characteristics and its center of rotation during active head and upper arm movements-comparisons of whiplash-associated disorders, non-specific neck pain and asymptomatic individuals. *Journal of Biomechanics*, *41*(13), 2799-2805.
- Gronqvist, J., Haggman-Henrikson, B., & Eriksson, P. O. (2008). Impaired jaw function and eating difficulties in whiplash-associated disorders. *Swed Dent J*, 32(4), 171-177.
- Grushka, M., Ching, V. W., Epstein, J. B., & Gorsky, M. (2007). Radiographic and clinical features of temporomandibular dysfunction in patients following indirect trauma: A retrospective study. *Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology*, 104(6), 772-780. https://doi.org/10.1016/j.tripleo.2007.02.025

- Haggman-Henrikson, B., Gronqvist, J., & Eriksson, P. O. (2011). Frequent jaw-face pain in chronic Whiplash-Associated Disorders. *Swed Dent J*, 35(3), 123-131.
- Haggman-Henrikson, B., Lampa, E., & Nordh, E. (2013). Altered thermal sensitivity in facial skin in chronic whiplash-associated disorders. *International Journal of Oral Science*, *5*(3), 150-154. https://doi.org/https://dx.doi.org/10.1038/ijos.2013.42
- Helgadottir, H., Kristjansson, E., Einarsson, E., Karduna, A., & Jonsson, H. (2011). Altered activity of the serratus anterior during unilateral arm elevation in patients with cervical disorders. *Journal of Electromyography and Kinesiology*, 21(6), 947-953. https://doi.org/10.1016/j.jelekin.2011.07.007
- Helgadottir, H., Kristjansson, E., Mottram, S., Karduna, A., & Jonsson, H. (2011). Altered Alignment of the Shoulder Girdle and Cervical Spine in Patients With Insidious Onset Neck Pain and Whiplash-Associated Disorder. *Journal of Applied Biomechanics*, 27(3), 181-191. https://doi.org/10.1123/jab.27.3.181
- Helgadottir, H., Kristjansson, E., Mottram, S., Karduna, A. R., & Jonsson, H., Jr. (2010). Altered scapular orientation during arm elevation in patients with insidious onset neck pain and whiplashassociated disorder. *J Orthop Sports Phys Ther*, *40*(12), 784-791. https://doi.org/https://dx.doi.org/10.2519/jospt.2010.3405
- Janssen, M., Ischebeck, B. K., de Vries, J., Kleinrensink, G.-J., Frens, M. A., & van der Geest, J. N. (2015). Smooth Pursuit Eye Movement Deficits in Patients With Whiplash and Neck Pain are Modulated by Target Predictability. *Spine (03622436), 40*(19), E1052-E1057. https://doi.org/10.1097/BRS.00000000001016
- Juul-Kristensen, B., Clausen, B., Ris, I., Jensen, R. V., Steffensen, R. F., Chreiteh, S. S., Jørgensen, M. B., & Søgaard, K. (2013). Increased neck muscle activity and impaired balance among females with whiplash-related chronic neck pain: a cros s-sectional study. *Journal of Rehabilitation Medicine* (Stiftelsen Rehabiliteringsinformation), 45(4), 376-384. https://doi.org/10.2340/16501977-1120
- Kaale, B. R., Krakenes, J., Albrektsen, G., & Wester, K. (2005a). Head position and impact direction in whiplash injuries: associations with MRI-verified lesions of ligaments and membranes in the upper cervical spine. *Journal of Neurotrauma*, 22(11), 1294-1302. https://doi.org/10.1089/neu.2005.22.1294
- Kaale, B. R., Krakenes, J., Albrektsen, G., & Wester, K. (2005b). Whiplash-associated disorders impairment rating: neck disability index score according to severity of MRI findings of ligaments and membranes in the upper cervical spine. *Journal of Neurotrauma*, 22(4), 466-475. https://doi.org/10.1089/neu.2005.22.466
- Kaale, B. R., Krakenes, J., Albrektsen, G., & Wester, K. (2007). Active range of motion as an indicator for ligament and membrane lesions in the upper cervical spine after a whiplash trauma. *J Neurotrauma*, 24(4), 713-721.
- Karlsson, A., Dahlqvist Leinhard, O., ÅSlund, U., West, J., Romu, T., Smedby, Ö., Zsigmond, P., & Peolsson, A. (2016). An Investigation of Fat Infiltration of the Multifidus Muscle in Patients With Severe Neck Symptoms Associated With Chronic Whiplash-Associated Disorder. *Journal of Orthopaedic & Sports Physical Therapy*, 46(10), 886-893. https://doi.org/10.2519/jospt.2016.6553
- Karlsson, A., Peolsson, A., Elliott, J., Romu, T., Ljunggren, H., Borga, M., & Dahlqvist Leinhard, O. (2019). The relation between local and distal muscle fat infiltration in chronic whiplash using magnetic resonance imaging. *PLoS ONE [Electronic Resource]*, 14(12), e0226037. https://doi.org/https://dx.doi.org/10.1371/journal.pone.0226037
- Kasch, H., Qerama, E., Bach, F. W., & Jensen, T. S. (2005). Reduced cold pressor pain tolerance in nonrecovered whiplash patients: a 1-year prospective study. *Eur J Pain*, *9*(5), 561-569. https://doi.org/10.1016/j.ejpain.2004.11.011
- Kelders, W. P., Kleinrensink, G. J., van der Geest, J. N., Schipper, I. B., Feenstra, L., De Zeeuw, C. I., & Frens, M. A. (2005). The cervico-ocular reflex is increased in whiplash injury patients. *Journal of Neurotrauma*, 22(1), 133-137. https://doi.org/10.1089/neu.2005.22.133
- Kivioja, J., Ozenci, V., Rinaldi, L., Kouwenhoven, M., Lindgren, U., & Link, H. (2001). Systemic immune response in whiplash injury and ankle sprain: elevated IL-6 and IL-10. *Clin Immunol, 101*(1), 106-112. https://doi.org/10.1006/clim.2001.5086
- Kivioja, J., Rinaldi, L., Ozenci, V., Kouwenhoven, M., Kostulas, N., Lindgren, U., & Link, H. (2001). Chemokines and their receptors in whiplash injury: elevated RANTES and CCR-5. *J Clin Immunol*, 21(4), 272-277. https://doi.org/10.1023/a:1010931309088

- Kivioja, J., Sjalin, M., & Lindgren, U. (2004). Psychiatric morbidity in patients with chronic whiplashassociated disorder. *Spine (Phila Pa 1976), 29*(11), 1235-1239. https://doi.org/10.1097/00007632-200406010-00013
- Knackstedt, H., Kråkenes, J., Bansevicius, D., & Russell, M. (2012). Magnetic resonance imaging of craniovertebral structures: clinical significance in cervicogenic headaches. *Journal of Headache & Pain*, 13(1), 39-44. https://doi.org/10.1007/s10194-011-0387-4
- Kongsted, A., Jorgensen, L. V., Bendix, T., Korsholm, L., & Leboeuf-Yde, C. (2007). Are smooth pursuit eye movements altered in chronic whiplash-associated disorders? A cross-sectional study. *Clin Rehabil*, *21*(11), 1038-1049.
- Krakenes, J., Kaale, B. R., Nordli, H., Moen, G., Rorvik, J., & Gilhus, N. E. (2003). MR analysis of the transverse ligament in the late stage of whiplash injury. *Acta Radiol*, 44(6), 637-644. https://doi.org/10.1046/j.1600-0455.2003.00134.x
- Kristjansson, E., & Jonsson, H., Jr. (2002). Is the sagittal configuration of the cervical spine changed in women with chronic whiplash syndrome? A comparative computer-assisted radiographic assessment. *Journal of Manipulative & Physiological Therapeutics*, 25(9), 550-555. https://doi.org/10.1067/mmt.2002.128371
- Kumbhare, D. A., Balsor, B., Parkinson, W. L., Harding Bsckin, P., Bedard, M., Papaioannou, A., & Adachi, J. D. (2005). Measurement of cervical flexor endurance following whiplash. *Disability & Rehabilitation*, 27(14), 801-807. https://doi.org/10.1080/09638280400020615
- Lee, Y. H., Lee, K. M., Auh, Q. S., & Hong, J. P. (2018). Magnetic resonance imaging-based prediction of the relationship between whiplash injury and temporomandibular disorders. *Frontiers in Neurology*, *8*(Jan). https://doi.org/http://dx.doi.org/10.3389/fneur.2017.00725
- Lemming, D., Graven-Nielsen, T., Sorensen, J., Arendt-Nielsen, L., & Gerdle, B. (2012). Widespread pain hypersensitivity and facilitated temporal summation of deep tissue pain in whiplash associated disorder: an explorative study of women. *Journal of Rehabilitation Medicine*, 44(8), 648-657. https://doi.org/https://dx.doi.org/10.2340/16501977-1006
- Lenoir, D., Willaert, W., Ickmans, K., Bernaers, L., Nijs, J., Malfliet, A., Danneels, L., Leysen, L., De Pauw, R., Cagnie, B., Coppieters, I., & Meeus, M. (2022). Are Reports of Pain, Disability, Quality of Life, Psychological Factors, and Central Sensitization Related to Outcomes of Quantitative Sensory Testing in Patients Suffering from Chronic Whiplash Associated Disorders? *Clinical Journal of Pain, 38(3)*, 159-172. https://doi.org/https://dx.doi.org/10.1097/AJP.000000000001013
- Lindgren, K. A., Kettunen, J. A., Paatelma, M., & Mikkonen, R. H. (2009). Dynamic kine magnetic resonance imaging in whiplash patients and in age- and sex-matched controls. *Pain Res Manag*, 14(6), 427-432.
- Linnman, C., Appel, L., Fredrikson, M., Gordh, T., Soderlund, A., Langstrom, B., & Engler, H. (2011). Elevated [11C]-D-deprenyl uptake in chronic Whiplash Associated Disorder suggests persistent musculoskeletal inflammation. *PLoS one*, 6(4), e19182. https://doi.org/https://dx.doi.org/10.1371/journal.pone.0019182
- Linnman, C., Appel, L., Soderlund, A., Frans, O., Engler, H., Furmark, T., Gordh, T., Langstrom, B., & Fredrikson, M. (2009). Chronic whiplash symptoms are related to altered regional cerebral blood flow in the resting state. *Eur J Pain*, *13*(1), 65-70. https://doi.org/https://dx.doi.org/10.1016/j.ejpain.2008.03.001
- MAA. (2009). Annual Report 2008/2009. Motor Accident Authority of NSW, Sydney, Australia.
- Madeleine, P., Nielsen, M., & Arendt-Nielsen, L. (2011). Characterization of postural control deficit in whiplash patients by means of linear and nonlinear analyses A pilot study. *J Electromyogr Kinesiol*, *21*(2), 291-297. https://doi.org/https://dx.doi.org/10.1016/j.jelekin.2010.05.006
- Malik, A. A., Robinson, S., Khan, W. S., Dillon, B., & Lovell, M. E. (2017). Assessment of Range of Movement, Pain and Disability Following a Whiplash Injury. *The open orthopaedics journal*, *11*, 541-545. https://doi.org/https://dx.doi.org/10.2174/1874325001711010541
- Matsumoto, M., Ichihara, D., Okada, E., Chiba, K., Toyama, Y., Fujiwara, H., Momoshima, S., Nishiwaki, Y., & Takahata, T. (2012). Cross-sectional area of the posterior extensor muscles of the cervical spine in whiplash injury patients versus healthy volunteers--10 year follow-up MR study. *Injury*, 43(6), 912-916. https://doi.org/https://dx.doi.org/10.1016/j.injury.2012.01.017
- Matsumoto, M., Okada, E., Ichihara, D., Chiba, K., Toyama, Y., Fujiwara, H., Momoshima, S., Nishiwaki, Y., Hashimoto, T., Inoue, T., Watanabe, M., & Takahata, T. (2010). Prospective ten-year follow-up study comparing patients with whiplash-associated disorders and asymptomatic subjects using

magnetic resonance imaging. *Spine*, 35(18), 1684-1690. https://doi.org/https://dx.doi.org/10.1097/BRS.0b013e3181c9a8c7

- Maxwell, S., & Sterling, M. (2013). An investigation of the use of a numeric pain rating scale with ice application to the neck to determine cold hyperalgesia. *Manual therapy*, *18*(2), 172-174.
- McLean, S. A., Diatchenko, L., Lee, Y. M., Swor, R. A., Domeier, R. M., Jones, J. S., Jones, C. W., Reed, C., Harris, R. E., Maixner, W., Clauw, D. J., & Liberzon, I. (2011). Catechol O-methyltransferase haplotype predicts immediate musculoskeletal neck pain and psychological symptoms after motor vehicle collision. *Journal of Pain*, 12(1), 101-107. https://doi.org/10.1016/j.jpain.2010.05.008
- Michele, S., Julia, T., Sandra, E., & Gwendolen, J. (2002). Pressure Pain Thresholds in Chronic Whiplash Associated Disorder: Further Evidence of Altered Central Pain Processing. *Journal of Musculoskeletal Pain*, *10:3*, 69-81. https://doi.org/10.1300/J094v10n03_05
- Moog M, Q. J., Hall T, Zusman M. (2002). The late whiplash syndrome: a psychophysical study. Euro J Pain 2002;6:283-294. *Eur J Pain*, 7(6), 561-562; author reply 563. https://doi.org/10.1016/S1090-3801(03)00034-X
- Myran, R., Kvistad, K. A., Nygaard, O. P., Andresen, H., Folvik, M., & Zwart, J. A. (2008). Magnetic resonance imaging assessment of the alar ligaments in whiplash injuries: a case-control study. *Spine*, *33*(18), 2012-2016. https://doi.org/https://dx.doi.org/10.1097/BRS.0b013e31817bb0bd
- Myran, R., Zwart, J. A., Kvistad, K. A., Folvik, M., Lydersen, S., Ro, M., Woodhouse, A., & Nygaard, O. P. (2011). Clinical characteristics, pain, and disability in relation to alar ligament MRI findings. *Spine*, 36(13), E862-867. https://doi.org/https://dx.doi.org/10.1097/BRS.0b013e3181ff1dde
- Nederhand, M. J., MJ, I. J., Hermens, H. J., Baten, C. T., & Zilvold, G. (2000). Cervical muscle dysfunction in the chronic whiplash associated disorder grade II (WAD-II). *Spine (Phila Pa 1976)*, 25(15), 1938-1943. https://doi.org/10.1097/00007632-200008010-00012
- Ng, T. S., Pedler, A., Vicenzino, B., & Sterling, M. (2014). Less efficacious conditioned pain modulation and sensory hypersensitivity in chronic whiplash-associated disorders in Singapore. *Clinical Journal* of Pain, 30(5), 436-442. https://doi.org/https://dx.doi.org/10.1097/AJP.0b013e3182a03940
- Ohberg, F., Grip, H., Wiklund, U., Sterner, Y., Karlsson, J. S., & Gerdle, B. (2003). Chronic whiplash associated disorders and neck movement measurements: an instantaneous helical axis approach. *IEEE Trans Inf Technol Biomed*, 7(4), 274-282. https://doi.org/10.1109/titb.2003.821328
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., & Brennan, S. E. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *International journal of surgery*, 88, 105906.
- Pajediene, E., Janusauskaite, J., Samusyte, G., Stasaitis, K., Petrikonis, K., & Bileviciute-Ljungar, I. (2015). Patterns of acute whiplash-associated disorder in the Lithuanian population after road traffic accidents. *Journal of Rehabilitation Medicine*, 47(1), 52-57. https://doi.org/https://dx.doi.org/10.2340/16501977-1892
- Patijn, J., Wilmink, J., ter Linden, F. H., & Kingma, H. (2001). CT study of craniovertebral rotation in whiplash injury. *Eur Spine J*, *10*(1), 38-43. https://doi.org/10.1007/s005860000212
- Pearson, I., Reichert, A., De Serres, S. J., Dumas, J. P., & Cote, J. N. (2009). Maximal voluntary isometric neck strength deficits in adults with whiplash-associated disorders and association with pain and fear of movement. *J Orthop Sports Phys Ther*, *39*(3), 179-187. https://doi.org/https://dx.doi.org/10.2519/jospt.2009.2950
- Pedler, A., & Sterling, M. (2011). Assessing fear-avoidance beliefs in patients with whiplash-associated disorders: A comparison of 2 measures. *Clinical Journal of Pain*, 27(6), 502-507.
- Pedler, A., & Sterling, M. (2013). Patients with chronic whiplash can be subgrouped on the basis of symptoms of sensory hypersensitivity and posttraumatic stress. *Pain*, 154(9), 1640-1648. https://doi.org/10.1016/j.pain.2013.05.005
- Peolsson, A., Ludvigsson, M., Wibault, J., Dedering, A., & Peterson, G. (2014). Function in patients with cervical radiculopathy or chronic whiplash-associated disorders compared with healthy volunteers. *Journal of manipulative and physiological therapeutics*, 37(4), 211-218.
- Peolsson, A., Peterson, G., Trygg, J., & Nilsson, D. (2016). Multivariate analysis of ultrasound-recorded dorsal strain sequences: Investigation of dynamic neck extensions in women with chronic whiplash associated disorders. *Scientific Reports*, *6*, 30415. https://doi.org/https://dx.doi.org/10.1038/srep30415
- Peterson, G., Nilsson, D., Peterson, S., Dedering, A., Trygg, J., Wallman, T., & Peolsson, A. (2016). Changes in Dorsal Neck Muscle Function in Individuals with Chronic Whiplash-Associated Disorders: A

Real-Time Ultrasound Case-Control Study. *Ultrasound in medicine & biology*, 42(5), 1090-1102. https://doi.org/https://dx.doi.org/10.1016/j.ultrasmedbio.2015.12.022

- Prushansky, T., Dvir, Z., Pevzner, E., & Gordon, C. R. (2004). Electro-oculographic measures in patients with chronic whiplash and healthy subjects: a comparative study. *J Neurol Neurosurg Psychiatry*, 75(11), 1642-1644. https://doi.org/10.1136/jnnp.2003.031278
- Radanov, B. P., Mannion, A. F., & Ballinari, P. (2011). Are symptoms of late whiplash specific? A comparison of SCL-90-R symptom profiles of patients with late whiplash and patients with chronic pain due to other types of trauma. *J Rheumatol*, *38*(6), 1086-1094. https://doi.org/https://dx.doi.org/10.3899/jrheum.101112
- Rahnama, L., Peterson, G., Kazemnejad, A., Trygg, J., & Peolsson, A. (2018). Alterations in the Mechanical Response of Deep Dorsal Neck Muscles in Individuals Experiencing Whiplash-Associated Disorders Compared to Healthy Controls: An Ultrasound Study. *American Journal of Physical Medicine & Rehabilitation*, 97(2), 75-82. https://doi.org/10.1097/PHM.00000000000845
- Rastovic, P., Definis Gojanovic, M., Berberovic, M., Pavlovic, M., Lesko, J., Galic, G., Pandza, M., & Gojanovic, M. D. (2017). Isometric muscle fatigue of the paravertebral and upper extremity muscles after whiplash injury. *Annals of Saudi Medicine*, *37*(4), 297-307. https://doi.org/10.5144/0256-4947.2017.297
- Rebbeck, T., Moloney, N., Azoory, R., Hübscher, M., Waller, R., Gibbons, R., & Beales, D. (2015). Clinical ratings of pain sensitivity correlate with quantitative measures in people with chronic neck pain and healthy controls: cross-sectional study. *Physical Therapy*, 95(11), 1536-1546.
- Richter, H. O., Roijezon, U., Bjorklund, M., & Djupsjobacka, M. (2010). Long-term adaptation to neck/shoulder pain and perceptual performance in a hand laterality motor imagery test. *Perception*, *39*(1), 119-130. https://doi.org/10.1068/p6418
- Roijezon, U., Bjorklund, M., & Djupsjobacka, M. (2011). The slow and fast components of postural sway in chronic neck pain. *Manual Ther*, *16*(3), 273-278. https://doi.org/https://dx.doi.org/10.1016/j.math.2010.11.008
- Sandlund, J., Djupsjobacka, M., Ryhed, B., Hamberg, J., & Bjorklund, M. (2006). Predictive and discriminative value of shoulder proprioception tests for patients with whiplash-associated disorders. *Journal of Rehabilitation Medicine*, *38*(1), 44-49. https://doi.org/10.1080/16501970510042847
- Sandlund, J., Roijezon, U., Bjorklund, M., & Djupsjobacka, M. (2008). Acuity of goal-directed arm movements to visible targets in chronic neck pain. *J Rehabil Med*, *40*(5), 366-374. https://doi.org/https://dx.doi.org/10.2340/16501977-0175
- Scott, D., Jull, G., & Sterling, M. (2005). Widespread sensory hypersensitivity is a feature of chronic whiplash-associated disorder but not chronic idiopathic neck pain. *Clin J Pain*, 21(2), 175-181. https://doi.org/10.1097/00002508-200503000-00009
- See, K., & Treleaven, J. (2015). Identifying upper limb disability in patients with persistent whiplash. *Manual therapy*, 20(3), 487-493.
- Shaked, D., Shaked, G., Sebbag, G., & Czeiger, D. (2020). Can cortisol levels predict the severity of acute whiplash-associated disorders? *Eur J Trauma Emerg Surg*, 46(2), 357-362. https://doi.org/10.1007/s00068-018-1028-2
- State Insurance Regulatory Authority: Guidelines for the management of acute whiplash-associated disorders for health professionals. Sydney: third edition 2014.
- Sjolander, P., Michaelson, P., Jaric, S., & Djupsjobacka, M. (2008). Sensorimotor disturbances in chronic neck pain--range of motion, peak velocity, smoothness of movement, and repositioning acuity. *Manual Ther*, *13*(2), 122-131.
- Solarino, B., Coppola, F., Di Vella, G., Corsalini, M., & Quaranta, N. (2009). Vestibular evoked myogenic potentials (VEMPs) in whiplash injury: a prospective study. *Acta Otolaryngol (Stockh)*, 129(9), 976-981. https://doi.org/https://dx.doi.org/10.1080/00016480802527552
- Spitzer, W. O. (1995). Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining" whiplash" and its management. *Spine, 20,* 1S-73S.
- Stenneberg, M. S., Scholten-Peeters, G. G. M., den Uil, C. S., Wildeman, M. E., van Trijffel, E., & de Bie, R. A. (2022). Clinical characteristics differ between patients with non-traumatic neck pain, patients with whiplash-associated disorders, and pain-free individuals. *Physiother Theory Pract*, 38(13), 2592-2602. https://doi.org/10.1080/09593985.2021.1962464
- Sterling, M. (2010). Differential development of sensory hypersensitivity and a measure of spinal cord hyperexcitability following whiplash injury. *Pain (Amsterdam), 150*(3), 501-506. https://doi.org/10.1016/j.pain.2010.06.003
- Sterling, M., Elliott, J. M., & Cabot, P. J. (2013). The Course of Serum Inflammatory Biomarkers Following Whiplash Injury and Their Relationship to Sensory and Muscle Measures: A Longitudinal Cohort Study. PLoS ONE [Electronic Resource], 8(10). https://doi.org/http://dx.doi.org/10.1371/journal.pone.0077903
- Sterling, M., Hendrikz, J., & Kenardy, J. (2010). Compensation claim lodgement and health outcome developmental trajectories following whiplash injury: a prospective study. *Pain*, 150(1), 22-28.
- Sterling, M., Hodkinson, E., Pettiford, C., Souvlis, T., & Curatolo, M. (2008). Psychologic factors are related to some sensory pain thresholds but not nociceptic flexion reflex threshold in chronic whiplash. *Clinical Journal of Pain*, 24(2), 124-130. https://doi.org/10.1097/ajp.0b013e31815ca293
- Sterling, M., Jull, G., Vicenzino, B., & Kenardy, J. (2003). Sensory hypersensitivity occurs soon after whiplash injury and is associated with poor recovery. *Pain, 104*(3), 509-517. https://doi.org/10.1016/S0304-3959(03)00078-2
- Sterling, M., Jull, G., Vicenzino, B., & Kenardy, J. (2004). Characterization of acute whiplash-associated disorders. *Spine (Phila Pa 1976)*, *29*(2), 182-188. https://doi.org/10.1097/01.BRS.0000105535.12598.AE
- Sterling, M., Jull, G., Vicenzino, B., Kenardy, J., & Darnell, R. (2003). Development of motor system dysfunction following whiplash injury. *Pain*, *103*(1-2), 65-73. https://doi.org/10.1016/s0304-3959(02)00420-7
- Sterling, M., & Pedler, A. (2009). A neuropathic pain component is common in acute whiplash and associated with a more complex clinical presentation. *Man Ther*, 14(2), 173-179. https://doi.org/10.1016/j.math.2008.01.009
- Sterling, M., Treleaven, J., & Jull, G. (2002). Responses to a clinical test of mechanical provocation of nerve tissue in whiplash associated disorder. *Man Ther*, 7(2), 89-94. https://doi.org/10.1054/math.2002.0443
- Stiebel-Kalish, H., Amitai, A., Mimouni, M., Bach, M., Saban, T., Cahn, M., & Gantz, L. (2018). The Discrepancy between Subjective and Objective Measures of Convergence Insufficiency in Whiplash-Associated Disorder versus Control Participants. *Ophthalmology*, *125*(6), 924-928. https://doi.org/https://dx.doi.org/10.1016/j.ophtha.2017.11.030
- Stokell, R., Yu, A., Williams, K., & Treleaven, J. (2011). Dynamic and functional balance tasks in subjects with persistent whiplash: A pilot trial. *Manual therapy*, *16*(4), 394-398.
- Sturzenegger, M., Radanov, B. P., Winter, P., Simko, M., Farra, A. D., & Di Stefano, G. (2008). MRI-based brain volumetry in chronic whiplash patients: no evidence for traumatic brain injury. *Acta Neurol Scand*, *117*(1), 49-54.
- Sullivan, M. J., Hall, E., Bartolacci, R., Sullivan, M. E., & Adams, H. (2002). Perceived cognitive deficits, emotional distress and disability following whiplash injury. *Pain Research & Management*, 7(3), 120-126. https://doi.org/10.1155/2002/502984
- Sundstrom, T., Guez, M., Hildingsson, C., Toolanen, G., Nyberg, L., & Riklund, K. (2006). Altered cerebral blood flow in chronic neck pain patients but not in whiplash patients: a 99mTc-HMPAO rCBF study. *Eur Spine J*, 15(8), 1189-1195. https://doi.org/10.1007/s00586-005-0040-5
- Tjell, C., Tenenbaum, A., & Sandström, S. (2002). Smooth pursuit neck torsion test -- a specific test for whiplash associated disorders? *Journal of Whiplash & Related Disorders*, 1(2), 9-24. https://doi.org/10.1300/j180v01n02_02
- TRACsa. (2008). Clinical guidelines for best practice management of acute and chronic whiplashassociated disorders. TRACsa: Trauma and Injury Recovery, Adelaide, Australia.
- Treleaven, J., Jull, G., & Grip, H. (2011). Head eye co-ordination and gaze stability in subjects with persistent whiplash associated disorders. *Manual Ther*, *16*(3), 252-257. https://doi.org/https://dx.doi.org/10.1016/j.math.2010.11.002
- Treleaven, J., Jull, G., & LowChoy, N. (2005a). Smooth pursuit neck torsion test in whiplash-associated disorders: relationship to self-reports of neck pain and disability, dizziness and anxiety. *Journal of Rehabilitation Medicine*, 37(4), 219-223. https://doi.org/10.1080/16501970410024299
- Treleaven, J., Jull, G., & Lowchoy, N. (2005b). Standing balance in persistent whiplash: a comparison between subjects with and without dizziness. *Journal of Rehabilitation Medicine*, 37(4), 224-229. https://doi.org/10.1080/16501970510027989

- Treleaven, J., Jull, G., & Sterling, M. (2003). Dizziness and unsteadiness following whiplash injury: characteristic features and relationship with cervical joint position error. *Journal of Rehabilitation Medicine*, 35(1), 36-43. https://doi.org/10.1080/16501970306109
- Treleaven, J., LowChoy, N., Darnell, R., Panizza, B., Brown-Rothwell, D., & Jull, G. (2008). Comparison of sensorimotor disturbance between subjects with persistent whiplash-associated disorder and subjects with vestibular pathology associated with acoustic neuroma. Arch Phys Med Rehabil, 89(3), 522-530. https://doi.org/https://dx.doi.org/10.1016/j.apmr.2007.11.002
- Treleaven, J., & Takasaki, H. (2015). High variability of the subjective visual vertical test of vertical perception, in some people with neck pain Should this be a standard measure of cervical proprioception? *Manual therapy*, 20(1), 183-188. https://doi.org/https://dx.doi.org/10.1016/j.math.2014.08.005
- Ulbrich, E. J., Anderson, S. E., Busato, A., Abderhalden, S., Boesch, C., Zimmermann, H., Heini, P., Hodler, J., & Sturzenegger, M. (2011). Cervical muscle area measurements in acute whiplash patients and controls. *J Magn Reson Imaging*, *33*(3), 668-675. https://doi.org/https://dx.doi.org/10.1002/jmri.22446
- Uremovic, M., Cvijetic, S., Pasic, M. B., Seric, V., Vidrih, B., & Demarin, V. (2007). Impairment of proprioception after whiplash injury. *Coll Antropol*, *31*(3), 823-827.
- Valenza, M. C., Valenza, G., Gonzalez-Jimenez, E., De-la-Llave-Rincon, A. I., Arroyo-Morales, M., & Fernandez-de-Las-Penas, C. (2012). Alteration in sleep quality in patients with mechanical insidious neck pain and whiplash-associated neck pain. *Am J Phys Med Rehabil*, *91*(7), 584-591. https://doi.org/https://dx.doi.org/10.1097/PHM.0b013e31823c757c
- Valera-Calero, J. A., Al-Buqain-Ortega, A., Arias-Buria, J. L., Fernandez-de-Las-Penas, C., Varol, U., & Ortega-Santiago, R. (2021). Echo-intensity, fatty infiltration, and morphology ultrasound imaging assessment in healthy and whiplash associated disorders populations: an observational study. *Eur Spine J*, 30(10), 3059-3067. https://doi.org/https://dx.doi.org/10.1007/s00586-021-06915-z
- Van Looveren, E., Cagnie, B., Coppieters, I., Meeus, M., & De Pauw, R. (2021). Changes in Muscle Morphology in Female Chronic Neck Pain Patients Using Magnetic Resonance Imaging. *Spine*, 46(10), 638-648. https://doi.org/http://dx.doi.org/10.1097/BRS.00000000003856
- Vangronsveld, K., Van Damme, S., Peters, M., Vlaeyen, J., Goossens, M., & Crombez, G. (2007). An experimental investigation on attentional interference by threatening fixations of the neck in patients with chronic whiplash syndrome. *Pain*, *127*(1-2), 121-128.
- Vetti, N., Krakenes, J., Ask, T., Erdal, K. A., Torkildsen, M. D. N., Rorvik, J., Gilhus, N. E., & Espeland, A. (2011). Follow-Up MR Imaging of the Alar and Transverse Ligaments after Whiplash Injury: A Prospective Controlled Study. American Journal of Neuroradiology, 32(10), 1836-1841. https://doi.org/10.3174/ajnr.A2636
- Vetti, N., Krakenes, J., Damsgaard, E., Rorvik, J., Gilhus, N. E., & Espeland, A. (2011). Magnetic resonance imaging of the alar and transverse ligaments in acute whiplash-associated disorders 1 and 2: a cross-sectional controlled study. *Spine*, *36*(6), E434-440. https://doi.org/https://dx.doi.org/10.1097/BRS.0b013e3181da21a9
- Vikne, H., Bakke, E. S., Liestol, K., Engen, S. R., & Vollestad, N. (2013). Muscle activity and head kinematics in unconstrained movements in subjects with chronic neck pain; cervical motor dysfunction or low exertion motor output? *BMC Musculoskeletal Disorders*, *14*, 314. https://doi.org/https://dx.doi.org/10.1186/1471-2474-14-314
- Voerman, G. E., Vollenbroek-Hutten, M. M., & Hermens, H. J. (2007). Upper trapezius muscle activation patterns in neck-shoulder pain patients and healthy controls. *Eur J Appl Physiol*, 102(1), 1-9.
- Wallin, M., Liedberg, G., Borsbo, B., & Gerdle, B. (2012). Thermal detection and pain thresholds but not pressure pain thresholds are correlated with psychological factors in women with chronic whiplash-associated pain. *Clinical Journal of Pain*, 28(3), 211-221. https://doi.org/https://dx.doi.org/10.1097/AJP.0b013e318226c3fd
- Wallin, M. K., & Raak, R. I. (2008). Quality of life in subgroups of individuals with whiplash-associated disorders. *Eur J Pain*, 12(7), 842-849. https://doi.org/https://dx.doi.org/10.1016/j.ejpain.2007.12.008
- Watson, D. H., & Drummond, P. D. (2016). The Role of the Trigemino Cervical Complex in Chronic Whiplash Associated Headache: A Cross Sectional Study. *Headache*, 56(6), 961-975. https://doi.org/http://dx.doi.org/10.1111/head.12805

- Woodhouse, A., Liljeback, P., & Vasseljen, O. (2010). REDUCED HEAD STEADINESS IN WHIPLASH COMPARED WITH NON-TRAUMATIC NECK PAIN. *Journal of Rehabilitation Medicine*, 42(1), 35-41. https://doi.org/10.2340/16501977-0484
- Woodhouse, A., Stavdahl, O., & Vasseljen, O. (2010). Irregular head movement patterns in whiplash patients during a trajectory task. *Experimental Brain Research*, 201(2), 261-270. https://doi.org/10.1007/s00221-009-2033-9
- Woodhouse, A., & Vasseljen, O. (2008). Altered motor control patterns in whiplash and chronic neck pain. BMC Musculoskeletal Disorders, 9. https://doi.org/10.1186/1471-2474-9-90
- Yu, L. J., Stokell, R., & Treleaven, J. (2011). The effect of neck torsion on postural stability in subjects with persistent whiplash. *Manual Ther*, *16*(4), 339-343. https://doi.org/https://dx.doi.org/10.1016/j.math.2010.12.006

9. List of tables

Table 2: Inclusion criterion for whiplash-associated-disorders assessment studies
Table 3: Clinical questions related to the assessment section of whiplash-associated disorders 10 Table 4: Assessment of whiplash-associated disorders subcategories
Table 4: Assessment of whiplash-associated disorders subcategories 11 Table 5: Clinical question for panel to vote on consensus recommendation 14 Table 6: Assessment recommendation classifications and their interpretation 16 Table 7: Summary of included studies (acute muscle function) 19 Table 8: Summary of included studies (acute muscle performance) 20 Table 9: Summary of evidence for included studies in acute physical musculoskeletal impairment. 20 Table 10: Summary of included studies (chronic trigger point) 21 Table 11: Summary of included studies (chronic cervical range of motion) 22 Table 12: Summary of included studies (chronic muscle performance) 25 Table 13: Summary of included studies (chronic muscle function) 30 Table 14: Summary of evidence for included studies in chronic physical musculoskeletal impairment 33 Table 15: Evidence to decision framework (physical musculoskeletal impairment in acute WAD) 36 Table 16: Evidence to decision framework (physical musculoskeletal impairment in chronic WAD) 41
Table 5: Clinical question for panel to vote on consensus recommendation14Table 6: Assessment recommendation classifications and their interpretation16Table 7: Summary of included studies (acute muscle function)19Table 8: Summary of included studies (acute muscle performance)20Table 9: Summary of evidence for included studies in acute physical musculoskeletal impairment.20Table 10: Summary of included studies (chronic trigger point)21Table 11: Summary of included studies (chronic cervical range of motion)22Table 12: Summary of included studies (chronic muscle performance)25Table 13: Summary of included studies (chronic muscle function)30Table 14: Summary of evidence for included studies in chronic physical musculoskeletal33Table 15: Evidence to decision framework (physical musculoskeletal impairment in acute WAD)36Table 16: Evidence to decision framework (physical musculoskeletal impairment in chronic WAD)41
Table 6: Assessment recommendation classifications and their interpretation
Table 7: Summary of included studies (acute muscle function)19Table 8: Summary of included studies (acute muscle performance)20Table 9: Summary of evidence for included studies in acute physical musculoskeletal impairment.20Table 10: Summary of included studies (chronic trigger point)21Table 11: Summary of included studies (chronic cervical range of motion)22Table 12: Summary of included studies (chronic muscle performance)25Table 13: Summary of included studies (chronic muscle function)30Table 14: Summary of evidence for included studies in chronic physical musculoskeletal33Table 15: Evidence to decision framework (physical musculoskeletal impairment in acute WAD).36
Table 8: Summary of included studies (acute muscle performance)20Table 9: Summary of evidence for included studies in acute physical musculoskeletal impairment.20Table 10: Summary of included studies (chronic trigger point)21Table 11: Summary of included studies (chronic cervical range of motion)22Table 12: Summary of included studies (chronic muscle performance)25Table 13: Summary of included studies (chronic muscle function)30Table 14: Summary of evidence for included studies in chronic physical musculoskeletal33Table 15: Evidence to decision framework (physical musculoskeletal impairment in acute WAD)36Table 16: Evidence to decision framework (physical musculoskeletal impairment in chronic WAD)41
Table 9: Summary of evidence for included studies in acute physical musculoskeletal impairment.20Table 10: Summary of included studies (chronic trigger point)Table 11: Summary of included studies (chronic cervical range of motion)22Table 12: Summary of included studies (chronic muscle performance)25Table 13: Summary of included studies (chronic muscle function)30Table 14: Summary of evidence for included studies in chronic physical musculoskeletalimpairment33Table 15: Evidence to decision framework (physical musculoskeletal impairment in chronic WAD).36Table 16: Evidence to decision framework (physical musculoskeletal impairment in chronic WAD)
20Table 10: Summary of included studies (chronic trigger point)21Table 11: Summary of included studies (chronic cervical range of motion)22Table 12: Summary of included studies (chronic muscle performance)25Table 13: Summary of included studies (chronic muscle function)30Table 14: Summary of evidence for included studies in chronic physical musculoskeletalimpairment33Table 15: Evidence to decision framework (physical musculoskeletal impairment in acute WAD)36Table 16: Evidence to decision framework (physical musculoskeletal impairment in chronic WAD)
Table 10: Summary of included studies (chronic cervical range of motion) 22 Table 11: Summary of included studies (chronic cervical range of motion) 22 Table 12: Summary of included studies (chronic muscle performance) 25 Table 13: Summary of included studies (chronic muscle function) 30 Table 14: Summary of evidence for included studies in chronic physical musculoskeletal 33 Table 15: Evidence to decision framework (physical musculoskeletal impairment in acute WAD) 36 36 Table 16: Evidence to decision framework (physical musculoskeletal impairment in chronic WAD).41
Table 11: Summary of included studies (chronic muscle performance)
Table 12: Summary of included studies (chronic muscle performance)
Table 13: Summary of included studies (chronic muscle function)
Table 14: Summary of evidence for included studies in chronic physical musculoskeletal impairment
Table 15: Evidence to decision framework (physical musculoskeletal impairment in acute WAD) 36 Table 16: Evidence to decision framework (physical musculoskeletal impairment in chronic WAD) 41
Table 16: Evidence to decision framework (physical musculoskeletal impairment in chronic WAD) 41
Table 17: Summary of included studies (acute cervical joint position error)
Table 18: Summary of included studies (acute cervical movement sense)
Table 19: Summary of included studies (acute oculomotor disturbance)
Table 20: Summary of included studies (acute balance)
Table 21: Summary of included studies (acute coordination test)
Table 22: Summary of evidence for included studies in acute sensorimotor
Table 23: Summary of included studies (chronic cervical joint position error)
Table 24: Summary of included studies (chronic cervical movement sense) 57
Table 25: Summary of included studies (chronic oculomotor disturbance) 61
Table 26: Summary of included studies (chronic balance)
Table 27: Summary of included studies (chronic coordination test) 70
Table 28: Summary of included studies (chronic others proprioception) 71
Table 29: Summary of evidence for included studies in chronic sensorimotor 72
Table 30: Evidence to decision framework (sensorimotor in acute WAD) 77

Table 31: Evidence to decision framework (sensorimotor in chronic WAD)	81
Table 32: Summary of included studies (acute pain sensitivity)	89
Table 33: Summary of evidence for included studies in acute pain sensitivity	93
Table 34: Summary of included studies (chronic pain sensitivity)	95
Table 35: Summary of evidence for included studies in chronic pain sensitivity	105
Table 36: Evidence to decision framework (pain sensitivity in acute WAD)	110
Table 37: Evidence to decision framework (pain sensitivity chronic WAD)	117
Table 38: Summary of included studies (acute additional psychological factors)	.125
Table 39: Summary of evidence for included studies in acute additional psychological factors	.126
Table 40: Summary of included studies (chronic additional psychological factors)	.127
Table 41: Summary of evidence for included studies in chronic additional psychological factors	.129
Table 42: Evidence to decision framework (additional psychological factors in acute WAD)	.130
Table 43: Evidence to decision framework (additional psychological factors in chronic WAD)	134
Table 44: Summary of included studies (acute additional symptoms)	.140
Table 45: Summary of evidence for included studies in acute additional symptoms	.142
Table 46: Summary of included studies (chronic additional symptoms)	.142
Table 47: Summary of evidence for included studies in chronic additional symptoms	144
Table 48: Evidence to decision framework (additional symptoms in acute and chronic WAD)	145
Table 49: Summary of included studies (acute stress hormone)	. 151
Table 50 Summary of included studies (acute inflammatory biomarkers)	. 151
Table 51: Summary of evidence for included studies in acute medical testing	153
Table 52: Summary of included studies (chronic stress hormone)	154
Table 53: Summary of included studies (chronic inflammatory biomarkers)	155
Table 54: Summary of included studies (chronic cerebral blood flow)	155
Table 55: Summary of included studies (chronic others)	156
Table 56: Summary of evidence for included studies in chronic advanced medical testing	158
Table 57: Evidence to decision framework (advanced medical testing in acute WAD)	159
Table 58: Evidence to decision framework advanced medical testing in chronic WAD	.162
Table 59: Summary of included studies (acute morphology structure changes)	168
Table 60: Summary of included studies (acute morphology muscle fat infiltration)	171
Table 61: Summary of included studies (acute morphology muscle size)	171
Table 62: Summary of included studies (acute muscle stiffness)	.172
Table 63: Summary of evidence for included studies in acute imaging	.173

Table 64: Summary of included studies (chronic morphology structure changes)
Table 65: Summary of included studies (chronic morphology structure changes - others)
Table 66: Summary of included studies (chronic morphology muscle fat infiltration)
Table 67: Summary of included studies (chronic morphology muscle size)
Table 68: Summary of included studies (chronic muscle morphology ultrasound)
Table 69: Summary of included studies (chronic metabolites)
Table 70: Summary of included studies (chronic brain)
Table 71: Summary of included studies (chronic nerve mobility) 194
Table 72: Summary of included studies (chronic - other) 195
Table 73: Summary of evidence for included studies in chronic imaging
Table 74: Evidence to decision framework (imaging in acute WAD)
Table 75: Evidence to decision framework (imaging in chronic WAD)

10. List of figures

Figure 1	Assessment of	whiplash-assoc	ciated disorders	s search results.		9
----------	---------------	----------------	------------------	-------------------	--	---

Disclaimer

This publication may contain information that relates to the regulation of workers compensation insurance, motor accident compulsory third party (CTP) insurance and home building compensation in NSW. This publication does not represent a comprehensive statement of the law as it applies to particular problems or to individuals, or as a substitute for legal advice.

SIRA, Level 14-15, 231 Elizabeth Street, Sydney NSW 2000

Website www.sira.nsw.gov.au

Catalogue no. SIRA09194 | ISBN 978-0-7347-4716-7

© State of New South Wales through the State Insurance Regulatory Authority NSW. This copyright work is licensed under a Creative Commons Australia Attribution 4.0 license, <u>http://creativecommons.org/licenses/bynd/4.0/legalcode</u>